This volume collects longer articles on the analysis and numerics of Maxwell’s equations. The topics include functional analytic and Hilbert space methods, compact embeddings, solution theories and asymptotics, electromagnetostatics, time-harmonic Maxwell’s equations, time-dependent Maxwell’s equations, eddy current approximations, scattering and radiation problems, inverse problems, finite element methods, boundary element methods, and isogeometric analysis.
Author(s): Ulrich Langer, Dirk Pauly, Sergey Repin
Series: Radon Series on Computational and Applied Mathematics 24
Publisher: De Gruyter
Year: 2019
Language: English
Pages: 448
Cover......Page 1
Radon Series on Computational
and Applied Mathematics......Page 3
Maxwell’s
Equations:
Analysis and Numerics......Page 5
© 2019......Page 6
Preface......Page 7
Contents
......Page 11
1 The curl–div system: theory and finite
element approximation
......Page 13
2 Darwin and higher order approximations
to Maxwell’s equations in ℝ3......Page 57
3 Weck’s selection theorem: The Maxwell
compactness property for bounded weak
Lipschitz domains with mixed boundary
conditions in arbitrary dimensions......Page 89
4 Numerical analysis of the half-space
matching method with Robin traces
on a convex polygonal scatterer......Page 117
5 Eigenvalue problems in inverse
electromagnetic scattering theory......Page 157
6 Maxwell eigenmodes in product domains......Page 183
7 Discrete regular decompositions
of tetrahedral discrete 1-forms......Page 211
8 Some old and some new results in inverse
obstacle scattering......Page 271
9 The time-harmonic Maxwell equations
with impedance boundary conditions
in polyhedral domains......Page 297
10 Time-harmonic electro-magnetic scattering
in exterior weak Lipschitz domains with
mixed boundary conditions......Page 353
11 On an electro-magneto-elasto-dynamic
transmission problem......Page 395
12......Page 415