Matrices Connected with Brauer’s Centralizer Algebras

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Mark D. McKerihan
Series: PhD thesis at University of Michigan
Year: 1996

Language: English

ACKNOW LEDGEM ENTS .......................................................................................................... ii
LIST OF FIGURES ....................................................................................................................... iv
CHAPTER
1. Introd uction .......................................................................................................................... 1
1. A Theorem of Schur ..................................................................................................... 1
2. Centralizer algebras for 0 n and Sp 2 n ..................................................................... 3
3. A tower of ideals in A^ ........................................................................................... 6
4. Matrices whose nullspaces encode the semisimple structure of AjX^ ................. 7
5. A combinatorial definition for 16
6. Some results about the matrices Y a / a « ..................................................................... 19
7. The algebra 20
2. Determinants of M x^ and .......................................................................... 25
1. Column permutations of standard matchings ........................................................ 25
2. Product formulas for and 31
3. Eigenvalues of Tk{x) and Tk{yi,..., yn) ................................................................. 32
4. The column span of P .............................................................................................. 34
5. Computation of det M x^ and 41
3. Combinatorial algorithms and the Littlewood-Richardson r u le ..................... 48
1. Robinson-Schensted-Knuth row insertion .............................................................. 50
2. Dual Knuth relations and equivalence ..................................................................... 51
3. Jeu de Taquin for standard tableaux ........................................................................ 53
4. The Littlewood-Richardson r u le .............................................................................. 54
5. A theorem of Dennis White ........................................................................................ 55
4. Jeu de Taquin for standard m atchings ....................................................................... 56
1. Definition of the algorithm ........................................................................................ 56
2. Jeu de Taquin preserves standardness .................................................................... 59
3. Dual Knuth equivalence with Jeu de Taquin for tableaux ................................. 65
4. The normal shape obtained via Jeu de Taquin .................................................... 70
5. Alternate statements of Theorems 2.23 and 2 .2 5 ................................................. 74
5. Remaining P roblem s .......................................................................................................... 75
BIBLIOGRAPHY ............................................................................................................................. 77