Author(s): Saunders Mac Lane
Edition: 1
Publisher: Springer
Year: 1985
Language: English
Pages: 487
Preface......Page 4
Contents......Page 6
Introduction......Page 12
1 Origins of Formal Structure......Page 17
1. The Natural Numbers......Page 18
2. Infinite Sets......Page 21
3. Permutations......Page 22
4. Time and Order......Page 24
5. Space and Motion......Page 27
6. Symmetry......Page 30
7. Transformation Groups......Page 32
8. Groups......Page 33
9. Boolean Algebra......Page 37
10. Calculus, Continuity, and To pology......Page 40
11. Human Activity and Ideas......Page 45
12. Mathematical Activities......Page 47
13. Axiomatic Structure......Page 51
1. Properties of Natural Numbers......Page 53
2. The Peano Postulates......Page 54
3. Natural Numbers Described by Recursion......Page 58
4. Number Theory......Page 59
5. Integers......Page 61
6. Rational Numbers......Page 62
7. Congruence......Page 63
8. Cardinal Numbers......Page 65
9. Ordinal Numbers......Page 67
10. What Are Numbers?......Page 69
1. Spatial Activities......Page 72
2. Proofs Without Figures......Page 74
3. The Parallel Axiom......Page 78
4. Hyperbolic Geometry......Page 81
5. Elliptic Geometry......Page 84
6. Geometric Magnitude......Page 86
7. Geometry by Motion......Page 87
8. Orientation......Page 93
9. Groups in Geometry......Page 96
10. Geometry by Groups......Page 98
11. Solid Geometry......Page 100
12. Is Geometry a Science?......Page 102
1. Measures of Magnitude......Page 104
2. Magnitudes as a Geometric Measure......Page 105
3. Manipulations of Magnitudes......Page 108
4. Comparison of Magnitudes......Page 109
5. Axioms fo r the Reals......Page 113
6. Arithmetic Construction of the Reals......Page 116
7. Vector Geometry......Page 118
8. Analytic Geometry......Page 120
9. Trigonometry......Page 121
10. Complex Numbers......Page 125
11. Stereographic Projection and Infinity......Page 127
12. Are Imaginary Numbers Real?......Page 129
13. Abstract Algebra Revealed......Page 130
14. The Quatemions-and Beyond......Page 131
15. Summary......Page 132
1. Types of Functions......Page 134
2. Maps......Page 136
3. What Is a Function?......Page 137
4. Functions as Sets of Pairs......Page 139
5. Transformation Groups......Page 144
6. Groups......Page 146
7. Galois Theory......Page 149
8. Constructions of Groups......Page 153
9. Simple Groups......Page 157
10. Summary: Ideas of Image and Composition......Page 158
1. Origins......Page 161
2. Integration......Page 163
3. Derivatives......Page 165
4. The Fundamental Theorem of the Integral Calculus......Page 166
5. Kepler's Laws and Newton's Laws......Page 169
6. Differential Equations......Page 172
7. Foundations of Calculus......Page 173
8. Approximations and Ta ylor's Series......Page 178
9. Partial Derivatives......Page 179
10. Differential Forms......Page 184
11. Calculus Becomes Analysis......Page 189
12. Interconnections of the Concepts......Page 194
1. Sources of Linearity......Page 196
2. Tr ansformations versus Matrices......Page 199
3. Eigenvalues......Page 202
4. Dual Spaces......Page 204
5. Inner Product Spaces......Page 207
6. Orthogonal Matrices......Page 209
7. Adjoints......Page 211
8. The Principal Axis Theorem......Page 213
9. Bilinearity and Te nsor Products......Page 215
10. Collapse by Quotients......Page 219
11. Exterior Algebra and Differential Forms......Page 221
12. Similarity and Sums......Page 224
13. Summary......Page 229
1. Curvature......Page 230
2. Gaussian Curvature fo r Surfaces......Page 233
3. Arc Length and Intrinsic Geometry......Page 237
4. Many-Valued Functions and Riemann Surfaces......Page 239
5. Examples of Manifolds......Page 244
6. Intrinsic Surfaces and To pological Spaces......Page 247
7. Manifolds......Page 250
8. Smooth Manifolds......Page 255
9. Paths and Quantities......Page 258
10. Riemann Metrics......Page 262
11. Sheaves......Page 263
12. What Is Geometry?......Page 267
1. Kepler's Laws......Page 270
2. Momentum, Wo rk, and Energy......Page 275
3. Lagrange's Equations......Page 278
4. Ve locities and Ta ngent Bundles......Page 285
5. Mechanics in Mathematics......Page 288
6. Hamilton's Principle......Page 289
7. Hamilton's Equations......Page 293
8. Tr icks versus Ideas......Page 298
9. The Principal Function......Page 300
10. The Hamilton-Jacobi Equation......Page 303
11. The Spinning To p......Page 306
12. The Form of Mechanics......Page 312
13. Quantum Mechanics......Page 314
1. Functions of a Complex Va riable......Page 318
2. Pathological Functions......Page 321
3. Complex Derivatives......Page 323
4. Complex Integration......Page 328
5. Paths in the Plane......Page 333
6. The Cauchy Theorem......Page 339
7. Uniform Convergence......Page 344
8. Power Series......Page 347
9. The Cauchy Integral Formula......Page 349
10. Singularities......Page 352
11. Riemann Surfaces......Page 355
12. Germs and Sheaves......Page 362
13. Analysis, Geometry, and To pology......Page 367
11 Sets, Logic, and Categories......Page 369
1. The Hierarchy of Sets......Page 370
2. Axiomatic Set Theory......Page 373
3. The Propositional Calculus......Page 379
4. First Order Language......Page 381
5. The Predicate Calculus......Page 384
6. Precision and Understanding......Page 388
7. Godel's Incompleteness Theorems......Page 390
8. Independence Results......Page 394
9. Categories and Functors......Page 397
10. Natural Tr ansformations......Page 401
11. Universals......Page 403
12. Axioms on Functions......Page 409
13. Intuitionistic Logic......Page 413
14. Independence by Means of Sheaves......Page 415
15. Foundation or Organization?......Page 417
12 The Mathematical Network......Page 420
1. The Formal......Page 421
2. Ideas......Page 426
3. The Network......Page 428
4. Subjects, Specialties, and Subdivisions......Page 433
5. Problems......Page 439
6. Understanding Mathematics......Page 442
7. Generalization and Abstraction......Page 445
8. Novelty......Page 449
9. Is Mathematics Tr ue?......Page 451
10. Platonism......Page 458
11. Preferred Directions fo r Research......Page 460
12. Summary......Page 464
Bibliography......Page 468
List of Symbols......Page 472
Index......Page 474