Mathematical Physics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Eugene Butkov
Series: World student series editions
Publisher: Addison-Wesley
Year: 1968

Language: English
Pages: 746
Tags: Mathematical Physics, Complex variables, Vector Calculus, Differential Equations, Distributions, Linear Algebra, Functional Analysis, Tensors, Variational Calculus

CONTENTS

Chapter 1 Vectors, Matrices, and Coordinates
1.1 Introduction . . . . . . . . . . . . . . . . . 1
1.2 Vectors in Cartesian Coordinate Systems . . . . . . . . 1
1.3 Changes of Axes. Rotation Matrices . . . . . . . . . 4
1.4 Repeated Rotations. Matrix Multiplication . . . . . . . . 8
1.5 Skew Cartesian Systems. Matrices in General . . . . . . . 11
1.6 Scalar and Vector Fields . . . . . . . . . . . . . 14
1.7 Vector Fields in Plane . . . . . . . . . . . . . . 20
1.8 Vector Fields in Space . . . . . . . . . . . . . . 26
1.9 Curvilinear Coordinates . . . . . . . . . . . . . 34

Chapter 2 Functions of a Complex Variable
2.1 Complex Numbers . . . . . . . . . . . . . . . 44
2.2 Basic Algebra and Geometry of Complex Numbers . . . . . 45
2.3 De Moivre Formula and the Calculation of Roots . . . . . . 48
2.4 Complex Functions. Euler’s Formula . . . . . . . . . 49
2.5 Applications of Euler’s Formula . . . . . . . . . . . 51
2.6 Multivalued Functions and Riemann Surfaces . . . . . . . 54
2.7 Analytic Functions. Cauchy Theorem . . . . . . . . . 58
2.8 Other Integral Theorems. Cauchy Integral Formula . . . . . 62
2.9 Complex Sequences and Series . . . . . . . . . . . 66
2.10 Taylor and Laurent Series . . . . . . . . . . . . . 71
2.11 Zeros and Singularities . . . . . . . . . . . . . . 78
2.12 The Residue Theorem and its Applications . . . . . . . . 33
2.13 Conformal Mapping by Analytic Functions . . . . . . . . 97
2.14 Complex Sphere and Point at Infinity . . . . . . . . . 102
2.15 Integral Representations . . . . . . . . . . . . . 104

Chapter 3 Linear Differential Equations of Second Order
3.] General Introduction. The Wronskian . . . . . . . . . 123
3.2 General Solution of The Homogeneous Equation . . . . . . 125
3.3 The Non-homogeneous Equation. Variation of Constants . . . . 126
3.4 Power Series Solutions . . . . . . . . . . . . . . 128
3.5 The Frobenius Method . . . . . . . . . . . . . . 130
3.6 Some other Methods of Solution . . . . . . . . . . . 147

Chapter 4 Fourier Series
4.1 Trigonometric Series . . . . . . . . . . . . . . 154
4.2 Definition of Fourier Series . . . . . . . . . . . . 155
4.3 Examples of Fourier Series . . . . . . . . . . . . 157
4.4 Parity Properties. Sine and Cosine Series . . . . . . . . 161
4.5 Complex Form of Fourier Series . . . . . . . . . . . 165
4.6 Point-wise Convergence of Fourier Series . . . . . . . . 167
4.7 Convergence in the Mean . . . . . . . . . . . . . 168
4.8 Applications of Fourier Series . . . . . . . . . . . . 172

Chapter 5 The Laplace Transformation
5.1 Operational Calculus . . . . . . . . . . . . . . 179
5.2 The Laplace Integral . . . . . . . . . . . . . . 180
5.3 Basic Properties of Laplace Transform . . . . . . . . . 184
5.4 The Inversion Problem . . . . . . . . . . . . . . 187
5.5 The Rational Fraction Decomposition . . . . . . . . . 189
5.6 The Convolution The0rem . . . . . . . . . . . . . 194
5.7 Additional Properties of Laplace Transform . . . . . . . 200
5.8 Periodic Functions. Rectification . . . . . . . . . . . 204
5.9 The Mellin Inversion Integral . . . . . ‘. . . . . . . 206
5.10 Applications of Laplace Transforms . . .. . . . . . . . 210

Chapter 6 Concepts of the Theory of Distributions
6.1 Strongly Peaked Functions and The Dirac Delta Function . . . 221
6.2 Delta Sequences . . . . . . . . . . . . . . . . 223
6.3 The δ-Calculus . . . . . . . . . . . . . . . . 226
6.4 Representations of Delta Functions . . . . . . . . . . 229
6.5 Applications of The δ-Calculus . . . . . . . . . . . 232
6.6 Weak Convergence . . . . . . . . . . . . . . . 236
6.? Correspondence of Functions and Distributions . . . . . . 240
6.8 Properties of Distributions . . . . . . . . . . . .. . 245
6.9 Sequences and Series of Distributions . . . . . . . . . 250
6.10 Distributions in N dimensions . . . . . . . . . . . . 257

Chapter 7 Fourier Transforms '
7.1 Representations of a Function . . . . . . . . . . . 260
7.2 Examples of Fourier Transformations . . . . . . . . . 262
7.3 Properties of Fourier Transforms . . . . . . . . . . . 266
7.4 Fourier Integral Theorem . . . . . . . . . . . . . . 269
7.5 Fourier Transforms of Distributions . . . . . . . . . . 271
7.6 Fourier Sine and Cosine Transforms . . . . . . . . . . 223
7.7 Applications of Fourier Transforms. The Principle of Causality . . 276

Chapter 8 Partial Differential Equations
8.1 The Stretched String. Wave Equation . . . . . . . . . 287
8.2 The Method of Separation of Variables . . . . . . . . . 291
8.3 Laplace and Poisson Equations . . . . . . . . . . . 295
8.4 The Diffusion Equation . . . . . . . . . . . . . 297
8.5 Use of Fourier and Laplace Transforms . . . . . . . . . 299
8.6 The Method of Eigenfunction Expansions and Finite Transforms . 304
8.7 Continuous Eigenvalue Spectrum . . . . . . . . . . . 308
8.8 Vibrations of a Membrane. Degeneracy . . . . . . . . . 313
8.9 Propagation of Sound. Helmholtz Equation . . . . . . . 319

Chapter 9 Special Functions
9.1 Cylindrical and Spherical Coordinates . . . . . . . . . 332
9.2 The Common Boundary-Value Problems . . . . . . . . 334
9.3 The Sturm-Liouville Problem . . . . . . . . . . . . 337
9.4 Self-Adjoint Operators . . . . . . . . . . . . . . 340
9.5 Legendre Polynomials . . . . . . . . . . . . . . 342
9.6 Fourier-Legendre Series . . . . . . . . . . . . . 350
9.7 Bessel Functions . . . . . . . . . . . . . . . 355
9.8 Associated Legendre Functions and Spherical Harmonics . . . . 372
9.9 Spherical Bessel functions . . . . . . . . . . . . . 381
9.10 Neumann Functions . . . . . . . . . . . . . . 388
9.11 Modified Bessel Functions . . . . . . . . . . . . . 394

Chapter 10 Finite-Dimensional Linear Spaces
10.1 Oscillations of Systems with Two Degrees of Freedom . . . . 405
10.2 Normal Coordinates and Linear Transformation . . . . . . 411
10.3 Vector Spaces, Bases, Coordinates . . . . . . . . . . 419
10.4 Linear Operators, Matrices, Inverses . . . . . . . . . . 424
10.5 Changes of Basis . . . . . . . . . . . . . . . 433
10.6 Inner Product. Orthogonality. Unitary Operators . . . . . . 437
10.7 The Metric. Generalized Orthogonality. . . . . . . . . . 441
10.8 Eigenvalue Problems. Diagonalization . . . . . . . . . 443
10.9 Simultaneous Diagonalization . . . . . . . . . . . . 451

Chapter 11 Infinite-Dimensional Vector Spaces
11.1 Spaces of Functions . . . . . . . . . . . . . . 463
11.2 The Postulates of Quantum Mechanics . . . . . . . . . 467
11.3 The Harmonics Oscillator . . . . . . . . . . . . . 471
11.4 Matrix Representations of Linear Operators . . . . . . . 476
11.5 Algebraic Methods of Solution . . . . . . . . . . . 483
11.6 Bases with Generalized Orthogonality . . . . . . . . . 488
11.7 Stretched String with a Discrete Mass in the Middle . . . . . 492
11.8 Applications of Eigenfunctions . . . . . . . . . . . 495

Chapter 12 Green’s Functions
12.1 Introduction . . . . . . . . . . . . . . . . . 503
12.2 Green’s Function for the Sturm-Liouville Operator . . . . . 508
12.3 Series Expansions for G(X,E) . . . . . , . . . . . . 514
12.4 Green’s Functions in Two Dimensions . . . . . . . . . 520
12.5 Green’s Functions for Initial Conditions . . . . . . . . . 523
12.6 Green’s Functions with Reflection Properties . . . . . . . 527
12.7 Green’s Functions for Boundary Conditions . . . . . . . 531
12.8 The Green’s Function Method . . . . . . . . . . . 536
12.9 A Case of Continuous Spectrum . . . . . . . . . . . 543

Chapter 13 Variational Methods
13.1 The Brachistochrone Problem . . . . . . . . . . . . 553
13.2 The Euler-Lagrange Equation . . . . . . . . . . . . 554
13.3 Hamilton’s Principle . . . . . . . . . . . . . . 560
13.4 Problems involving Sturm-Liouville Operators . . . . . . . 562
13.5 The Rayleigh-Ritz Method . . . . . . . . . . . . 565
13.6 Variational Problems with Constraints . . . . . . . . . 567
13.7 Variational Formulation of Eigenvalue Problems . . . . . . 573
13.3 Variational Problems in Many Dimensions . . . . . . . . 577
13.9 Formulation of Eigenvalue Problems by The Ratio Method . . . 581

Chapter 14 Travelling Waves. Radiation, Scattering
14.1 Motion of Infinite Stretched String . . . . . . . . . . 589
14.2 Propagation of Initial Conditions . . . . . . . . . . . 592
14.3 Semi-infinite String. Use of Symmetry Properties . . . . . . 595
14.4 Energy and Power Flow in a Stretched String . . . . . . . 599
14.5 Generation of Waves in a Stretched String . . . . . . . . 603
14.6 Radiation of Sound from a Pulsating Sphere . . . . . . . 611
14.7 The Retarded Potential . . . . . . . . . . . . . 619
14.8 Travailing Waves in Inhomogeneous Media . . . . . . . 624
14.9 Scattering Amplitudes and Phase Shifts . . . . . . . . . 628
14.10 Scattering in Three Dimensions. Partial Wave Analysis . . . . 633

Chapter 15 Perturbation Methods
15.1 Introduction . . . . . . . . . . . . . . . . . 644
15.2 The Born Approximation . . . . . . . . . . . . . . 647
15.3 Perturbation of Eigenvalue Problems . . . . . . . . . . 650
15.4 First-Order Rayleigh-Schrödinger Theory . . . . . . . . 653
15.5 The Second-Order Non-degenerate Theory . . . . . . . . 658
15.6 The Case of Degenerate Eigenvalues . . . . . . . . . . 665

Chapter 16 Tensors
16.1 Introduction . . . . . . . . . . . . . . . . . 671
16.2 Two-Dimensional Stresses . . . . . . . . . . . . . 672
16.3 Cartesian Tensors . . . . . . . . . . . . . . . 676
16.4 Algebra of Cartesian Tensors . . . . . . . . . . . . 681
16.5 Kronecker and Levi-Civita Tensors. Pseudo-tensors . . . . . 684
16.6 Derivatives of Tensors. Strain Tensor and Hooke’s Law . . . . 637
16.7 Tensors in Skew Cartesian Frames. Covariant and
Contravariant Representations . . . . . . . . . . . 696
16.8 General Tensors . . . . . . . . . . . . . . . . 700
16.9 Algebra of General Tensors. Relative Tensors . . . . . . . 705
16.10 The Covariant Derivative . . . . . . . . . . . . . 711
16.11 Calculus of General Tensors . . . . . . . . . . . . 715

Index. . . . . . . . . . . . . . . . . . . 727