Mathematical Methods in Physics: Distributions, Hilbert Space Operators, Variational Methods, and Applications in Quantum Physics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas. The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories. All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods.

The text is divided into three parts:

- Part I: A brief introduction to (Schwartz) distribution theory. Elements from the theories of ultra distributions and (Fourier) hyperfunctions are given in addition to some deeper results for Schwartz distributions, thus providing a rather comprehensive introduction to the theory of generalized functions. Basic properties and methods for distributions are developed with applications to constant coefficient ODEs and PDEs. The relation between distributions and holomorphic functions is considered, as well as basic properties of Sobolev spaces.

- Part II: Fundamental facts about Hilbert spaces. The basic theory of linear (bounded and unbounded) operators in Hilbert spaces and special classes of linear operators - compact, Hilbert-Schmidt, trace class, and Schrödinger operators, as needed in quantum physics and quantum information theory – are explored. This section also contains a detailed spectral analysis of all major classes of linear operators, including completeness of generalized eigenfunctions, as well as of (completely) positive mappings, in particular quantum operations.

- Part III: Direct methods of the calculus of variations and their applications to boundary- and eigenvalue-problems for linear and nonlinear partial differential operators. The authors conclude with a discussion of the Hohenberg-Kohn variational principle.

The appendices contain proofs of more general and deeper results, including completions, basic facts about metrizable Hausdorff locally convex topological vector spaces, Baire’s fundamental results and their main consequences, and bilinear functionals.

Mathematical Methods in Physics is aimed at a broad community of graduate students in mathematics, mathematical physics, quantum information theory, physics and engineering, as well as researchers in these disciplines. Expanded content and relevant updates will make this new edition a valuable resource for those working in these disciplines.

Author(s): Philippe Blanchard, Erwin Brüning (auth.)
Series: Progress in Mathematical Physics 69
Edition: 2
Publisher: Birkhäuser Basel
Year: 2015

Language: English
Pages: 598
Tags: Mathematical Physics; Mathematical Methods in Physics; Functional Analysis; Operator Theory; Optimization

Front Matter....Pages i-xxvii
Front Matter....Pages 1-1
Introduction....Pages 3-6
Spaces of Test Functions....Pages 7-24
Schwartz Distributions....Pages 25-43
Calculus for Distributions....Pages 45-61
Distributions as Derivatives of Functions....Pages 63-71
Tensor Products....Pages 73-84
Convolution Products....Pages 85-100
Applications of Convolution....Pages 101-117
Holomorphic Functions....Pages 119-131
Fourier Transformation....Pages 133-162
Distributions as Boundary Values of Analytic Functions....Pages 163-168
Other Spaces of Generalized Functions....Pages 169-179
Sobolev Spaces....Pages 181-198
Front Matter....Pages 199-199
Hilbert Spaces: A Brief Historical Introduction....Pages 201-212
Inner Product Spaces and Hilbert Spaces....Pages 213-225
Geometry of Hilbert Spaces....Pages 227-238
Separable Hilbert Spaces....Pages 239-254
Direct Sums and Tensor Products....Pages 255-263
Topological Aspects....Pages 265-276
Linear Operators....Pages 277-293
Front Matter....Pages 199-199
Quadratic Forms....Pages 295-305
Bounded Linear Operators....Pages 307-323
Special Classes of Linear Operators....Pages 325-342
Elements of Spectral Theory....Pages 343-353
Compact Operators....Pages 355-363
Hilbert–Schmidt and Trace Class Operators....Pages 365-391
The Spectral Theorem....Pages 393-417
Some Applications of the Spectral Representation....Pages 419-437
Spectral Analysis in Rigged Hilbert Spaces....Pages 439-453
Operator Algebras and Positive Mappings....Pages 455-482
Positive Mappings in Quantum Physics....Pages 483-500
Front Matter....Pages 501-501
Introduction....Pages 503-509
Direct Methods in the Calculus of Variations....Pages 511-517
Differential Calculus on Banach Spaces and Extrema of Functions....Pages 519-535
Constrained Minimization Problems (Method of Lagrange Multipliers)....Pages 537-546
Boundary and Eigenvalue Problems....Pages 547-562
Density Functional Theory of Atoms and Molecules....Pages 563-573
Back Matter....Pages 575-597