It is widely acknowledged that the traditional calculus sequence required of most molecular science majors, consisting of a year of differential and integral calculus and possibly a semester of multivariate calculus, does not provide the mathematical background needed for success in the quantum mechanics and statistical thermodynamics courses that follow. Mathematical Methods for Molecular Science is designed to support a one semester course that builds on the introductory calculus sequence and covers critical topics in multivariate calculus, ordinary differential equations, partial differential equations, harmonic analysis, linear algebra, and group theory. The development and distribution of this text was supported in part by a grant from the National Science Foundation (CHE-1900416).
Author(s): John Edward Straub
Edition: 2.0
Publisher: Steuben Press
Year: 2020
Language: English
Commentary: This version of the textbook--licensed under CC BY-NC-SA 4.0--has been offered for some time for free on the Unit Circle Press website (https://web.archive.org/web/20211106143442/http://unitcirclepress.com/). Errata & supplement on kinetic models of infectious disease are also available at LibGen.
City: Longmont, Colorado
Tags: Creative Commons, CC-BY-NC-SA-4.0
Introduction
Functions and coordinate systems
Survey of common functions of continuous variables
Exploring coordinate systems and their utility
End-of-chapter problems
Complex numbers and logarithms
Complex numbers and the complex plane
Special properties of logarithms
Application of logarithms and the logarithmic scale
Logarithms and Stirling's approximation
Connecting complex numbers and logarithms
Visualizing complex functions of complex variables
End-of-chapter problems
Differentiation in one and many dimensions
Differentiating functions of one variable
Partial derivatives of functions of many variables
Infinitesimal change and the total differential
Euler's theorem for homogeneous functions
Geometric interpretation of the total differential
End-of-chapter problems
Scalars, vectors, and vector algebra
Fundamental properties of scalars and vectors
Multiplication of vectors
End-of-chapter problems
Scalar and vector operators
Scalar operators
Differentiation of vector functions
The force and the potential energy
A survey of potential energy landscapes
Explicit forms of vector operations
Deriving explicit forms for vector operations
End-of-chapter problems
Extremizing functions of many variables
Extremizing functions of one and many variables
The method of Lagrange undetermined multipliers
Variational calculation of the energy of a one electron atom
Extremizing the multiplicity subject to constraints
End-of-chapter problems
Sequences, series, and expansions
Series, convergence, and limits
Power series
Expanding functions as Maclaurin and Taylor series
Taylor series expansions of potential energy functions
Useful approximations to functions based on power series
Self-similarity and fractal structures
End-of-chapter problems
Integration in one and many dimensions
Integrating functions of one variable
Integrating functions of many variables
An alternative to integration by parts for exponential integrals
Evaluating the definite integral of a gaussian function
An alternative to integration by parts for gaussian integrals
Properties of delta functions
End-of-chapter problems
Fundamentals of probability and statistics
Probability distributions of discrete variables
Probability distributions of continuous variables
Probability distributions in the physical sciences
Connecting the gaussian and binomial probability distributions
Uniform distributions of independent random variables
Gaussian distributions of independent random variables
Three definitions of Pythagorean means
Propagation of error through total differentials and Taylor series
End-of-chapter problems
Ordinary differential equations
First order ordinary differential equations
Applications of first order differential equations
Functions derived from exact differentials and integrating factors
End-of-chapter problems
More ordinary differential equations
Second order ordinary differential equations
Applications of second order differential equations
Power series solutions to differential equations
Quantum theory of a particle in a box
Classical theory of motion of a harmonic oscillator
Classical theory of a damped harmonic oscillator
Power series solutions to special equations in quantum theory
End-of-chapter problems
Partial differential equations
The classical heat equation
The classical diffusion equation
The classical wave equation
Survey of partial differential equations in the physical sciences
End-of-chapter problems
Fourier series, Fourier transforms, and harmonic analysis
Fourier series
Fourier transforms
Orthogonal vectors and orthogonal functions
End-of-chapter problems
Matrices and matrix algebra
Vectors, matrices, and determinants
Basic properties of matrix algebra
Solving coupled linear equations using Cramer's rule
Applications of determinants in Hückel theory
End-of-chapter problems
Eigenvalues and eigenvectors
Matrix eigenvalues and eigenvectors
Matrix methods for coupled differential equations
Scalar operators and eigenfunctions
End-of-chapter problems
Geometric transforms and molecular symmetry
Eigenvectors, geometric transforms, and symmetry
Matrix transformations and molecular symmetry
Point groups and the symmetry decision tree
End-of-chapter problems
Supplements
Notes on notation
Formulas from geometry
Formulas from trigonometry
Table of power series
Table of definite integrals
Table of indefinite integrals
Error function table
Complementary error function table
Table of Fourier transform pairs
Bibliography
Index
Colophon