Mathematical Induction: A powerful and elegant method of proof

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Titu Andreescu, Vlad Crisan
Publisher: XYZ Press
Year: 2017

Language: English
Commentary: corrected version of http://gen.lib.rus.ec/book/index.php?md5=E89FAACAB63CFEFF7AE12320C0263248

Table of contents :
Foreword v
1 A Brief Overview of Induction 1
1.1 Theory and Examples ....................... 1
1.1.1 Introductory Notions .................... 1
1.1.2 Variants of Induction .................... 7
1.1.3 Paradox of Induction .................... 9
1.1.4 Well-Ordering and Transfinite Induction ......... 17
1.2 Proposed Problems ......................... 22
2 Sums, Products, and Identities 23
2.1 Theory and Examples ....................... 23
2.2 Proposed Problems ......................... 37
3 Functions and Functional Equations 39
3.1 Theory and Examples ....................... 39
3.2 Proposed Problems ......................... 54
4 Inequalities 57
4.1 Theory and Examples ....................... 57
4.2 Proposed Problems ......................... 71
5 Sequences and Recurrences 75
5.1 Theory and Examples ....................... 75
5.2 Proposed Problems ......................... 85
6 Number Theory 91
6.1 Theory and Examples ....................... 91
6.1.1 The p and [g] Technique ................. 94
6.1.2 Divisibility ......................... 97
6.1.3 Representations ....................... 104
6.2 Proposed Problems ......................... 111
7 Combinatorics 117
7.1 Theory and Examples ....................... 117
7.1.1 Partitions and Configurations ............... 117
7.1.2 Graph Theory ....................... 128
7.1.3 Combinatorial Geometry ................. 137
7.2 Proposed Problems ......................... 145
8 Games 155
8.1 Theory and Examples ....................... 155
8.2 Proposed Problems ......................... 163
9 Miscellaneous Topics 165
9.1 Geometry .............................. 165
9.1.1 Examples .......................... 165
9.1.2 Proposed Problems ..................... 174
9.2 Induction in Calculus ....................... 176
9.2.1 Examples .......................... 176
9.2.2 Proposed Problems ..................... 184
9.3 Induction in Algebra ........................ 186
9.3.1 Examples .......................... 186
9.3.2 Proposed Problems ..................... 191
10 Solutions 193
1 A Brief Overview of Induction ................... 193
2 Sums, Products, and Identities .................. 202
3 Functions and Functional Equations ............... 209
4 Inequalities ............................. 231
5 Sequences and Recurrences .................... 252
6 Number Theory ........................... 283
7 Combinatorics ........................... 326
8 Games ................................ 380
9 Miscellaneous Topics ........................ 391
9.1 Geometry .......................... 391
9.2 Induction in Calculus ................... 403
9.3 Induction in Algebra .................... 414
Notations and Abbreviations 425
Bibliography 427
Other Books from XYZ Press 429