Mathematical Biology: I. An Introduction

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Mathematical Biology is a richly illustrated textbook in an exciting and fast growing field. Providing an in-depth look at the practical use of math modeling, it features exercises throughout that are drawn from a variety of bioscientific disciplines - population biology, developmental biology, physiology, epidemiology, and evolution, among others. It maintains a consistent level throughout so that graduate students can use it to gain a foothold into this dynamic research area.

Author(s): James D. Murray
Series: Interdisciplinary Applied Mathematics Pt. 1
Edition: 3rd
Publisher: Springer
Year: 2007

Language: English
Pages: 577

Cover Page......Page 1
Interdisciplinary Applied Mathematics Volume 17......Page 3
J.D. Murray - Mathematical Biology I. An Introduction......Page 5
Edition Info......Page 6
Preface to the Third Edition......Page 9
Preface to the First Edition......Page 13
Table of Contents......Page 17
1. Continuous Population Models for Single Species......Page 27
2. Discrete Population Models for a Single Species......Page 70
3. Models for Interacting Populations......Page 105
4. Temperature-Dependent Sex Determination (TSD): Crocodilian Survivorship......Page 145
5. Modelling the Dynamics of Marital Interaction: Divorce Prediction and Marriage Repair......Page 172
6. Reaction Kinetics......Page 201
7. Biological Oscillators and Switches......Page 244
8. BZ Oscillating Reactions......Page 283
9. Perturbed and Coupled Oscillators and Black Holes......Page 304
10. Dynamics of Infectious Diseases......Page 341
11. Reaction Diffusion, Chemotaxis, and Nonlocal Mechanisms......Page 421
12. Oscillator-Generated Wave Phenomena and Central Pattern Generators......Page 444
13. BiologicalWaves: Single-Species Models......Page 463
14. Use and Abuse of Fractals......Page 510
A. Phase Plane Analysis......Page 527
B. Routh-Hurwitz Conditions, Jury Conditions, Descartes’ Rule of Signs, and Exact Solutions of a Cubic......Page 533
Bibliography......Page 539
A,B......Page 563
C......Page 565
D......Page 566
E,F......Page 567
G......Page 568
H......Page 569
I,J,K,L......Page 570
M......Page 571
N,O......Page 572
P......Page 573
R......Page 574
S......Page 575
T,U,V,W......Page 576
Y,Z......Page 577