Mastering Machine Learning with Spark 2.x: Harness the potential of machine learning, through spark

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Unlock the complexities of machine learning algorithms in Spark to generate useful data insights through this data analysis tutorial About This Book • Process and analyze big data in a distributed and scalable way • Write sophisticated Spark pipelines that incorporate elaborate extraction • Build and use regression models to predict flight delays Who This Book Is For Are you a developer with a background in machine learning and statistics who is feeling limited by the current slow and “small data” machine learning tools? Then this is the book for you! In this book, you will create scalable machine learning applications to power a modern data-driven business using Spark. We assume that you already know the machine learning concepts and algorithms and have Spark up and running (whether on a cluster or locally) and have a basic knowledge of the various libraries contained in Spark. What You Will Learn • Use Spark streams to cluster tweets online • Run the PageRank algorithm to compute user influence • Perform complex manipulation of DataFrames using Spark • Define Spark pipelines to compose individual data transformations • Utilize generated models for off-line/on-line prediction • Transfer the learning from an ensemble to a simpler Neural Network • Understand basic graph properties and important graph operations • Use GraphFrames, an extension of DataFrames to graphs, to study graphs using an elegant query language • Use K-means algorithm to cluster movie reviews dataset In Detail The purpose of machine learning is to build systems that learn from data. Being able to understand trends and patterns in complex data is critical to success; it is one of the key strategies to unlock growth in the challenging contemporary marketplace today. With the meteoric rise of machine learning, developers are now keen on finding out how can they make their Spark applications smarter. This book gives you access to transform data into actionable knowledge. The book commences by defining machine learning primitives by the MLlib and H2O libraries. You will learn how to use Binary classification to detect the Higgs Boson particle in the huge amount of data produced by CERN particle collider and classify daily health activities using ensemble Methods for Multi-Class Classification. Next, you will solve a typical regression problem involving flight delay predictions and write sophisticated Spark pipelines. You will analyze Twitter data with help of the doc2vec algorithm and K-means clustering. Finally, you will build different pattern mining models using MLlib, perform complex manipulation of DataFrames using Spark and Spark SQL, and deploy your app in a Spark streaming environment. Style and approach This book takes a practical approach to help you get to grips with using Spark for analytics and to implement machine learning algorithms. We'll teach you about advanced applications of machine learning through illustrative examples. These examples will equip you to harness the potential of machine learning, through Spark, in a variety of enterprise-grade systems.

Author(s): Alex Tellez, Max Pumperla, Michal Malohlava
Edition: 1
Publisher: Packt Publishing
Year: 2017

Language: English
Commentary: True PDF
Pages: 323
City: Birmingham, UK
Tags: Machine Learning; Natural Language Processing; Decision Trees; Pattern Recognition; Graphs; Classification; Apache Spark; Naive Bayes; Ensemble Learning; Gephi; Graph Algorithms; Spark GraphX; Spark MLlib; Feature Extraction; H2O; Spark GraphFrames; Spark Streaming; Random Forest; Distributed Processing; word2vec