Mastering Machine Learning with scikit-learn: Apply effective learning algorithms to real-world problems using scikit-learn

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Key Features • Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks • Learn how to build and evaluate performance of efficient models using scikit-learn • Practical guide to master your basics and learn from real life applications of machine learning Book Description Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn’s API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model’s performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach. What you will learn • Review fundamental concepts such as bias and variance • Extract features from categorical variables, text, and images • Predict the values of continuous variables using linear regression and K Nearest Neighbors • Classify documents and images using logistic regression and support vector machines • Create ensembles of estimators using bagging and boosting techniques • Discover hidden structures in data using K-Means clustering • Evaluate the performance of machine learning systems in common tasks

Author(s): Gavin Hackeling
Edition: 2
Publisher: Packt Publishing
Year: 2017

Language: English
Commentary: True PDF
Pages: 254
Tags: Machine Learning; Neural Networks; Regression; Decision Trees; Python; Classification; Principal Component Analysis; Support Vector Machines; Categorical Variables; Dimensionality Reduction; Naive Bayes; Linear Regression; Logistic Regression; scikit-learn; Ensemble Learning; Perceptron; Feature Extraction; Random Forest