Mass Transport in Magmatic Systems describes the properties and processes of these natural occurrences, including a description and discussions of how properties can be used for quantitative description of mass and energy transport on, and in, Earth and terrestrial planets. As the experimentally obtained chemical and physical properties of magma is scattered across literature, this book provides a comprehensive volume on the topic. Moreover, links between properties and processes are rarely appreciated. This makes it challenging for a non-experimentalist to access, evaluate, and apply such data.
Author(s): Bjorn Mysen
Publisher: Elsevier
Year: 2022
Language: English
Pages: 905
City: Amsterdam
Front Cover
Mass Transport in Magmatic Systems
Mass Transport in Magmatic Systems
Copyright
Contents
Preface
1 - Melting in the Earth's interior: solidus and liquidus relations
1.1 Introduction
1.2 Premelting
1.3 Melting of peridotite
1.3.1 Peridotite melting without volatiles
1.3.2 Solidus phase assemblage and pressure
1.3.3 Peridotite melting with volatiles
1.3.3.1 Peridotite-H2O
1.3.3.2 Dehydration on the peridotite solidus
1.3.3.3 Peridotite-CO2 melting
1.3.3.4 Peridotite-C-O-H melting
1.3.3.4.1 Peridotite: H2O–CO2
1.3.3.4.2 Peridotite-C-O-H under reducing conditions
1.3.3.5 Magmatic processes in peridotite-C-O-H environments
1.4 Melting of basalt
1.4.1 Basalt/gabbro melting without volatiles
1.4.2 Basalt/gabbro-H2O
1.4.2.1 Dehydration melting on the basalt solidus
1.4.2.2 Basaltic magma and redox conditions
1.4.3 Basalt/gabbro-CO2
1.4.4 Basalt with multicomponent fluid
1.5 Melting of andesite
1.5.1 Andesite–H2O
1.5.2 Andesite melting and H2O activity
1.5.3 Melting of sediment
1.5.4 The role of oxygen fugacity
1.6 Rhyolite melting
1.6.1 Rhyolite-H2O
1.6.2 H2O-undersaturated rhyolite/granite melting
1.6.3 The role of oxygen fugacity
1.7 Concluding remarks
References
2 - Melting in the Earth's interior: melting phase relations between the solidus and liquidus
2.1 Introduction
2.2 Melting interval of mantle peridotite without volatiles
2.2.1 Degree of melting
2.2.2 Melt composition in the melting interval
2.2.3 Upper mantle magma genesis without volatiles
2.3 Melting interval of mantle peridotite with volatiles
2.3.1 Degree of melting: Peridotite—H2O
2.3.2 Melt composition in the peridotite—H2O melting interval
2.3.3 Upper mantle magma genesis with H2O
2.3.4 Degree of melting: Peridotite—CO2
2.3.5 Melt composition in the peridotite–CO2 melting interval
2.3.6 Melting of peridotite with halogens, CO2 and/or H2O
2.3.7 Peridotite-CO2 melting and upper mantle magma genesis
2.3.8 Peridotite–C–O–H melting and melt compositions
2.3.8.1 Mantle melting melting in peridotite–H2O–CO2
2.3.8.2 Melting in peridotite–C–O–H under reducing conditions
2.4 Melting interval of basalt
2.4.1 Redox variations at ambient pressure
2.4.2 High-pressure melting without volatiles
2.4.3 Melting of basalt with volatiles
2.4.3.1 Basalt-H2O
2.4.3.2 Magma genesis in hydrous basalt systems
2.4.3.3 Basalt–CO2
2.5 Melting interval of andesite
2.6 Melting interval of granite
2.6.1 H2O-undersaturated melting
2.6.2 Melting with variable redox conditions
2.7 Concluding remarks
References
3 - Element distribution during melting and crystallization
3.1 Introduction
3.2 Principles
3.3 Trace element substitution in melts and minerals
3.3.1 Trace element substitution in minerals
3.3.2 Trace element substitution in melts
3.3.2.1 Melt structural effects, NBO/T
3.3.2.2 Melt structural effects, site preference
3.3.2.3 Melt structural effects, Al⇔Si exchange
3.4 Element partitioning, intensive, and extensive variables
3.4.1 Olivine-melt
3.4.1.1 Olivine-melt partitioning and temperature
3.4.1.2 Olivine-melt partitioning and pressure
3.4.1.3 Olivine-melt partitioning and redox conditions
3.4.2 Plagioclase-melt
3.4.2.1 Plagioclase-melt partitioning and composition/structure
3.4.2.2 Plagioclase-melt partitioning and temperature
3.4.2.3 Plagioclase-melt partitioning and pressure
3.4.2.4 Plagioclase-melt partitioning and H2O content
3.4.2.5 Plagioclase-melt partitioning and redox conditions
3.4.3 Clinopyroxene-melt
3.4.3.1 Clinoyroxene-melt partitioning and composition/structure
3.4.3.2 Clinopyroxene-melt partitioning and temperature
3.4.3.3 Clinoyroxene-melt partitioning and pressure
3.4.3.4 Clinopyroxene-melt partitioning and redox conditions
3.4.4 Orthopyroxene-melt
3.4.4.1 Orthopyroxene-melt partitioning and composition/structure
3.4.4.2 Orthopyroxene-melt partitioning and temperature
3.4.4.3 Orthopyroxene-melt partitioning and pressure
3.4.4.4 Orthopyroxene-melt partitioning and redox conditions
3.4.5 Garnet-melt
3.4.5.1 Garnet-melt partitioning and composition/structure
3.4.5.2 Garnet-melt partitioning and temperature
3.4.5.3 Garnet-melt partitioning and pressure
3.4.6 Amphibole-melt
3.4.6.1 Amphibole-melt partitioning and composition/structure
3.4.6.2 Amphibole-melt partitioning and temperature
3.4.6.3 Amphibole-melt partitioning and pressure
3.4.6.4 Amphibole-melt partitioning and redox conditions
3.4.7 Other mineral-melt pairs
3.5 Mineral-melt partitioning and igneous processes
3.5.1 Melting models
3.5.2 Variable partition coefficients
3.6 Concluding remarks
References
4 - Energetics of melts and melting in magmatic systems
4.1 Introduction
4.2 Energetics of melting
4.2.1 Thermodynamics of premelting
4.2.1.1 Diopside (CaMgSi2O6)
4.2.1.2 Pseudowollastonite (α-CaSiO3)
4.2.1.3 Other crystalline metasilicates [Na2SiO3 (NS) and Li2SiO3 (LS)]
4.2.1.4 Protoenstatite (MgSiO3)
4.2.1.5 Pyrosilicates: gehlenite and åkermannite (Ca2Al2SiO7, Ca2MgSi2O7)
4.2.1.6 Orthosilicates/germanates: forsterite (Mg2SiO4) and CaMgGeO4
4.2.1.7 Tectosilicates: cristobalite (SiO2), nepheline/carnegieite (NaAlSiO4), and anorthite (CaAl2Si2O8)
4.2.1.8 Other compositions
4.2.2 Enthalpy and entropy of fusion
4.2.2.1 Enthalpy of fusion in magmatic systems
4.2.2.2 Fusion of silica polymorphs (SiO2)
4.2.2.3 Fusion of metal oxide-SiO2 compounds
4.2.2.4 Fusion of aluminosilicates
4.2.2.4.1 Fusion of peralkaline aluminosilicates
4.3 Heat content, heat capacity, and entropy of silicate melts and magma
4.3.1 Heat capacity and entropy of magmatic liquids
4.3.1.1 Volatiles, heat capacity, and entropy of magmatic liquids
4.3.2 Heat capacity, entropy, and silicate melt polymerization in metal oxide-SiO2 systems
4.3.3 Heat capacity and entropy in Al-bearing systems
4.3.4 Heat capacity and entropy in Fe- and Ti-bearing melt systems
4.3.5 Thermodynamics of mixing and solution
4.3.5.1 Activity-composition relationships
4.3.5.2 Energetics of mixing
4.4 Thermodynamics of melts and liquidus phase relations
4.5 Concluding remarks
References
5 - Structure of magmatic liquids
5.1 Introduction
5.2 Glass versus melt and glass transition
5.3 Silicate melt and glass structure
5.3.1 Degree of silicate polymerization, NBO/T
5.3.1.1 Melt properties and degree of melt polymerization (NBO/T)
5.3.2 Si–O–Al bonding and charge-balance of tetrahedrally coordinated Al3+
5.3.2.1 (Al,Si) mixing and melt and magma properties
5.3.3 Silicate speciation (Qn-species)
5.3.3.1 Silicate (Qn)-species and temperature
5.3.3.2 Silicate (Qn)-species, cation coordination, and pressure
5.3.3.3 Silicate (Qn)-species and cation ordering
5.3.4 Al3+ substitution for Si4+ in magmatic systems
5.3.4.1 Qn-species, Al-distribution, and properties of magmatic liquids
5.3.5 Other tetrahedrally coordinated cations (P5+ and Ti4+)
5.4 Iron in magmatic liquids
5.4.1 Redox relations of Fe3+ and Fe2+
5.4.1.1 Modeling redox ratio of iron in magmatic liquids
5.4.2 Structural role of iron in magmatic systems
5.4.2.1 Fe3+ in magmatic liquids
5.4.2.2 Fe2+ in magmatic liquids
5.4.3 Magma properties and redox ratio of iron
5.5 Concluding remarks
References
6 - Structure and properties of fluids
6.1 Introduction
6.2 Fluid/melt partitioning of volatile components
6.2.1 Fluid/melt partitioning of H2O
6.2.2 Fluid/melt partitioning of CO2
6.2.3 Fluid/melt partitioning of chlorine
6.2.4 Fluid/melt partitioning of fluorine
6.2.5 Fluid/melt partitioning of bromine and iodine
6.2.6 Fluid/melt partitioning of sulfur
6.3 Structure and properties of H2O in fluids
6.3.1 Structure of liquid and supercritical H2O
6.3.1.1 Experimentally determined structure
6.3.1.2 Numerical modeling of structure
6.3.2 Properties of liquid and supercritical H2O
6.3.2.1 Thermodynamic properties and equations of state of H2O
6.3.2.1.1 Experimental data
6.3.2.1.2 Numerical modeling
6.3.3 H2O–NaCl
6.3.3.1 Structure of H2O–NaCl fluid
6.3.3.2 Properties of H2O-Chloride fluid
6.3.4 H2O–C–O–H
6.3.4.1 H2O–CO2
6.3.4.2 H2O–CH4
6.3.5 H2O–S–O–H
6.4 Solubility behavior in fluid: H2O–SiO2
6.4.1 Solubility of SiO2 in H2O
6.4.2 Solubility mechanism of SiO2 in H2O
6.4.3 Properties of H2O–SiO2 fluid
6.4.4 H2O–SiO2–NaCl
6.5 Solubility behavior in fluid: H2O–SiO2–MgO
6.5.1 Solubility of MgO–SiO2 in H2O
6.5.2 Solubility mechanism of MgO–SiO2 in H2O
6.5.3 MgO–SiO2 solubility in saline solutions
6.5.4 Properties of MgO–SiO2–H2O fluid
6.6 Solubility behavior in fluid: H2O–Al2O3(–NaCl–KOH–SiO2)
6.6.1 Al2O3–H2O with and without halogens
6.6.2 H2O–Al2O3-alkali aluminosilicate with and without halogens
6.7 Minor and trace elements in aqueous fluid
6.7.1 Ti solubility
6.7.2 Zr solubility
6.7.3 Salinity of aqueous solutions and trace element solubility
6.7.3.1 U and Th solubility
6.7.3.2 Cr3+ solubility
6.7.3.3 Molybdenum solubility
6.7.3.4 Tungsten solubility
6.7.3.5 Tin solubility
6.7.4 Sulfur in aqueous solutions and trace element solubility
6.7.4.1 Au solubility
6.7.4.2 Ag solubility
6.7.4.3 Cu solubility
6.7.4.4 Zn solubility
6.7.4.5 Mo solubility
6.8 Concluding remarks
References
7 - Water in magma
7.1 Introduction
7.2 Speciation and abundance
7.3 Principles of solubility
7.4 H2O solubility
7.4.1 H2O solubility in simple system melts
7.4.1.1 H2O solubility in SiO2 melt
7.4.1.2 H2O solubility in metal Oxide-SiO2 melt
7.4.1.3 H2O solubility in aluminosilicate melt
7.4.2 Miscibility between hydrous melts and aqueous fluids
7.4.3 Water solubility and mixed volatiles
7.4.4 Water solubility in natural magmatic liquids
7.4.5 H2O solubility models for natural magma
7.4.6 Water solution mechanisms in magma
7.4.6.1 Dissolved water and melt polymerization
7.4.6.2 Water speciation, water concentration, temperature, and pressure
7.4.7 H2O in magmatic liquids
7.4.8 Properties and processes of hydrous magmatic liquids
7.4.8.1 Melting and crystallization
7.4.8.2 H2O and element partitioning
7.4.8.3 Water, melt structure, and hydrogen isotope fractionation
7.4.8.4 Transport properties of hydrous magma
7.5 Concluding remarks
References
8 - Volatiles in magmatic liquids
8.1 Introduction
8.2 Oxidized carbon species
8.2.1 Solubility of CO2 in magma
8.2.2 Solubility mechanisms of CO2 in magma
8.2.3 Oxidized carbon (CO2) in magmatic processes
8.2.3.1 Melting phase relations
8.2.3.2 Magma properties and CO2-induced melt polymerization
8.2.3.3 Degassing of magma
8.3 Reduced carbon (CH4, CO, and carbide)
8.3.1 Carbon monoxide (CO)
8.3.2 Carbide (C)
8.3.3 Methane (CH4)
8.3.4 Magma properties and CH4-induced melt depolymerization
8.4 Sulfur solubility
8.4.1 Oxidized sulfur (SO2 and SO3)
8.4.1.1 Composition, temperature and pressure effects on oxidized sulfur solubility
8.4.1.2 Solubility mechanisms of SO2 and SO3 in magma
8.4.1.3 Oxidized sulfur, temperature, and pressure
8.4.1.4 Magma properties and SO2/SO3-induced melt polymerization
8.4.2 Reduced sulfur (S2−)
8.4.2.1 Hydrous sulfide-bearing melts
8.4.2.2 Oxysulfide
8.4.2.3 Magma properties, sulfide-speciation and silicate melt polymerization
8.5 Nitrogen solubility and solution mechanisms
8.5.1 Oxidized nitrogen
8.5.2 Reduced nitrogen
8.5.3 Nitrogen in the Earth's interior
8.6 Hydrogen solubility and solution mechanisms
8.6.1 Hydrogen in the Earth's mantle
8.7 Halogen solubility and solution mechanisms
8.7.1 Fluorine solubility
8.7.2 Fluorine solution mechanisms
8.7.3 Chlorine solubility
8.7.4 Chlorine solution mechanisms
8.7.5 Bromine and iodine
8.7.6 Halogens in magma
8.8 Noble gas solubility and solution mechanisms
8.8.1 Noble gases in fully polymerized silicate melt structure
8.8.2 Noble gases in depolymerized silicate melt structure
8.8.3 Noble gases in magmatic systems
8.9 Concluding remarks
References
9 - Transport properties
9.1 Introduction
9.2 Relationships among transport properties
9.3 Viscosity of magmatic liquids
9.3.1 Magma viscosity, composition, and temperature
9.3.2 Viscosity and structure of magmatic liquids
9.3.3 Viscosity, iron content, and Fe3+/ΣFe of magmatic liquids
9.3.4 Effect of pressure on viscosity of magma
9.3.5 Viscosity and volatiles in magmatic liquids
9.3.5.1 Viscosity of hydrous magmatic liquids
9.3.5.2 Viscosity of magmatic liquids with other volatiles
9.4 Viscosity of model system silicate melts
9.4.1 Viscosity of melts and glasses in the M2/nn+O−SiO2 system
9.4.1.1 Viscosity and melt structure
9.4.1.2 Viscosity and temperature
9.4.1.3 Viscosity and mixed metal oxides
9.4.1.4 Viscosity of M2/nn+O−SiO2 melts and pressure
9.4.1.5 Viscosity and volatiles in M2/nn+O−SiO2 melts
9.4.2 Viscosity of melts and glasses in the M2/nn+O−Al2O3−SiO2 system
9.4.2.1 Viscous behavior of endmember components
9.4.2.2 Viscosity of aluminosilicate melts with composition and temperature
9.4.2.3 Viscosity of aluminosilicate melts with pressure
9.4.2.4 Viscosity and volatiles in aluminosilicate melts
9.4.2.4.1 H2O and melt viscosity
9.4.2.4.2 Halogens and melt viscosity
9.4.3 Viscosity of iron-bearing silicate melts
9.5 Modeling melt viscosity
9.6 Diffusion
9.6.1 Diffusion, composition, and temperature
9.6.1.1 Major element self-diffusion, melt composition, and melt structure
9.6.1.2 Trace element diffusion and cation properties
9.6.2 Diffusion, composition, and pressure
9.6.2.1 Major element self-diffusion, cation properties, temperature, and pressure
9.6.2.2 Trace element diffusion, cation properties, temperature, and pressure
9.6.3 Volatiles and diffusion
9.6.3.1 Diffusion and volatiles in magmatic liquids and
9.6.3.1.1 Effect of H2O
9.6.3.1.2 Effect of halogens
9.6.3.1.3 Effect of carbon dioxide
9.6.3.2 Diffusion of volatiles in melts
9.6.3.2.1 Noble gas diffusion
9.6.3.2.2 H2O diffusion
9.6.3.2.3 Halogen diffusion
9.6.3.2.4 CO2 diffusion
9.6.3.2.5 Sulfur diffusion
9.7 Electrical conductivity
9.7.1 Electrical conductivity, composition, and temperature
9.7.2 Electrical conductivity and pressure
9.7.3 Electrical conductivity and volatiles
9.7.3.1 Electrical conductivity and H2O
9.7.3.2 Electrical conductivity and CO2
9.8 Concluding remarks
References
10 - Equation-of-state of magmatic liquids
10.1 Introduction
10.2 Equation-of-state (EOS) of glass versus melt
10.3 Functional relationships
10.4 Equation-of-state of magmatic liquids
10.4.1 EOS of natural magma, composition, and temperature
10.4.2 EOS of natural magma and pressure
10.4.2.1 EOS of magmatic liquids in the Earth's crust
10.4.2.3 EOS of magmatic liquids in the lunar mantle
10.4.2.2 EOS of magmatic liquids in the Earth's mantle
10.4.3 Volatiles and their influence on the EOS of magmatic liquids
10.4.3.1 EOS of H2O in hydrous magmatic systems
10.4.3.2 EOS of hydrous magmatic liquids
10.4.3.3 EOS of magmatic liquids with other volatiles
10.5 Equation-of-state of simple system model liquids
10.5.1 EOS of melts in the M2/nn+O−SiO2 system
10.5.2 EOS of melts in the M2/nn+O−Al2O3−SiO2 system
10.5.3 EOS of melts with Ti4+ and Fe3+
10.5.3.1 EOS of ferrisilicate melts
10.5.3.2 EOS of Ti-bearing silicate melts
10.6 Concluding remarks
References
11 - Mass transport
11.1 Introduction
11.2 Porosity, permeability, and transport
11.2.1 Porosity and permeability of aqueous fluids and silicate melts
11.2.2 Equilibrium texture and wetting angle
11.2.2.1 Wetting angle and composition
11.2.2.1.1 Wetting angle and fluid composition
11.2.3 Dihedral angles and H2O distribution in the earth
11.2.3.1 Dihedral angles and properties
11.2.3.1.1 Geochemical properties and processes
11.2.3.1.2 Geophysical properties and processes
11.2.4 Wetting angles and partial melts
11.2.5 Melt/mineral dihedral angle, porosity, and properties
11.2.6 Permeability and porosity in carbonate and sulfide-bearing silicate systems
11.2.6.1 Wetting angles of carbonatite magma in the earth
11.2.6.2 Wetting angles of sulfide/metal melts
11.3 Concluding remarks
References
Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Back Cover