Combining the contemporary knowledge from widely scattered sources, this is a much-needed and comprehensive overview of the field. In maintaining a balance between theory and experiment, the book guides both advanced students and specialists to this research area.Topical reviews written by the foremost scientists explain recent trends and advances, focusing on the correlations between electronic structure and magnetic properties. The book spans recent trends in magnetism for molecules—as well as inorganic-based materials, with an emphasis on new phenomena being explored from both experimental and theoretical viewpoints with the aim of understanding magnetism on the atomic scale. The volume helps readers evaluate their own experimental observations and serves as a basis for the design of new magnetic materials.Topics covered include:Metallocenium Salts of Radical Anion Bis-(dichalcogenate) metalatesChiral Molecule-Based MagnetsCooperative Magnetic Behavior in Metal-Dicyanamide ComplexesLanthanide Ions in Molecular Exchange Coupled SystemsMonte Carlo SimulationMetallocene-Based MagnetsMagnetic Nanoporous Molecular MaterialsA unique reference work, indispensable for everyone concerned with the phenomena of magnetism.
Author(s): Joel S. Miller, Marc Drillon
Edition: 1
Year: 2005
Language: English
Pages: 395
Magnetism: Molecules to Materials V......Page 4
Contents......Page 8
Preface......Page 14
List of Contributors......Page 16
1.1 Introduction......Page 18
1.2.1 ET Salts Based on Decamethylmetallocenium Donors......Page 21
1.2.2 ET Salts Based on Other Metallocenium Donors......Page 23
1.3.1 Type I Mixed Chain Salts......Page 24
1.3.2 Type II Mixed Chain [M(Cp*)(2)][M´(L)(2)] Salts......Page 38
1.3.3 Type III Mixed Chain [M(Cp*)(2)][M´(L)(2)] Salts......Page 40
1.3.4 Type IV Mixed Chain [M(Cp*)(2)][M´(L)(2)] Salts......Page 47
1.3.5 Salts with Segregated Stacks not 1D Structures......Page 53
1.4 Summary and Conclusions......Page 54
References......Page 56
2.2 Physical and Optical Properties of Chiral or Noncentrosymmetric Magnetic Materials......Page 58
2.2.1 Magnetic Structure and Anisotropy......Page 59
2.2.2 Nonlinear Magneto-optical Effects......Page 60
2.2.3 Magneto-chiral Optical Effects......Page 65
2.3.1 Crystal Structures......Page 66
2.3.2 Magnetic Properties......Page 68
2.4 Two- and Three-dimensional Cyanide Bridged Chiral Magnets......Page 70
2.4.2 Two-dimensional Chiral Magnet [39]......Page 71
2.4.3 Three-dimensional Chiral Magnet [40]......Page 74
2.5.1 Magnetic Properties and the Magneto-optical Effect......Page 77
2.5.2 Nonlinear Magneto-optical Effect......Page 81
2.6 Conclusion......Page 85
References......Page 86
3.1 Introduction......Page 88
3.2.1 Structural Aspects......Page 90
3.2.2 Ferromagnetism......Page 93
3.2.3 Canted Antiferromagnetism......Page 96
3.2.4 Mechanism for Magnetic Ordering......Page 98
3.3.1 Structural Evidence......Page 99
3.3.2 Magnetic Behavior of α-Co(dca)(2)......Page 101
3.4.1 Crystal Structure......Page 102
3.4.2 Magnetic Properties......Page 103
3.5.1 (Ph(4)As)[Ni(dca)(3)]......Page 104
3.6 Heteroleptic M(dca)(2)L Magnets......Page 105
3.6.1 Mn(dca)(2)(pyz)......Page 106
3.6.2 Mn(dca)(2)(2,5-Me(2)pyz)(2)(H(2)O)(2)......Page 112
3.6.3 Mn(dca)(2)(H(2)O)......Page 113
3.6.4 Fe(dca)(2)(pym)·EtOH......Page 114
3.6.5 Fe(dca)(2)(abpt)(2)......Page 115
3.7 Dicyanophosphide: A Phosphorus-containing Analog of Dicyanamide......Page 116
3.8 Conclusions and Future Prospects......Page 117
References......Page 118
4.1 Introduction......Page 122
4.2 Interest of Conducting Molecular-based Magnets......Page 123
4.2.1 Superconductivity and Magnetism......Page 124
4.2.2 Exchange Interaction between Localised Moments and Conduction Electrons......Page 125
4.3.1 Isolated Magnetic Anions......Page 128
4.3.2 Metal Cluster Anions......Page 148
4.3.3 Chain Anions: Maleonitriledithiolates......Page 160
4.3.4 Layer Anions: Tris-oxalatometallates......Page 163
4.4 Conclusions......Page 170
References......Page 172
5.1.1 Generalities......Page 178
5.2.1 Gd(III)–Cu(II) Systems......Page 181
5.2.3 Gd(III)-organic Radical Compounds......Page 182
5.3 Superexchange Mediated by Ln(III) Ions......Page 187
5.4.1 Qualitative Insight into the Exchange Interaction......Page 191
5.4.2 Quantitative Insight into the Exchange Interaction......Page 197
5.4.3 The Exchange Interaction......Page 198
References......Page 202
6.1 Introduction......Page 206
6.2.1 Generalities......Page 207
6.2.2 Metropolis Algorithm......Page 209
6.2.3 Thermalization Process......Page 210
6.2.4 Size of Model and Periodic Boundary Conditions......Page 211
6.2.6 Magnetic Models......Page 213
6.2.7 Structure of a Monte Carlo Program......Page 214
6.3 Regular Infinite Networks......Page 216
6.4 Alternating Chains......Page 220
6.5 Finite Systems......Page 223
6.6 Exact Laws versus MC Simulations......Page 225
6.6.1 A Method to Obtain an ECS Law for a Regular 1D System: Fisher’s Law......Page 226
6.6.2 Small Molecules......Page 228
6.6.3 Extended Systems......Page 230
6.7 Some Complex Examples......Page 234
References......Page 237
7.1 Introduction......Page 240
7.2 Electrochemical and Magnetic Properties of Neutral Decamethylmetallocenes and Decamethylmetallocenium Cations Paired with Diamagnetic Anions......Page 241
7.3.2 Metathetical Routes......Page 243
7.4 Crystal Structures of Magnetic ET Salts......Page 244
7.5.1 Iron......Page 247
7.5.4 Other Metals......Page 249
7.6.1 Manganese......Page 250
7.6.2 Chromium......Page 251
7.7 2,3-Dichloro-5,6-dicyanoquinone Salts and Related Compounds......Page 252
7.8.1 Iron......Page 253
7.8.2 Manganese......Page 254
7.9.1 Iron......Page 255
7.10.1 Iron and Manganese......Page 256
7.12 Cyano and Perfluoromethyl Ethylenedithiolato Metalate Salts......Page 257
7.12.2 Manganese......Page 258
7.13 Benzenedithiolates and Ethylenedithiolates......Page 261
7.14 Additional Dithiolate Examples......Page 262
7.16 Other Acceptors that Support Ferromagnetic Coupling, but not Long-range Order above ~2 K......Page 263
7.17 Other Metallocenes and Related Species as Donors......Page 266
7.19 Mössbauer Spectroscopy......Page 268
7.21 Dimensionality of the Magnetic System and Additional Evidence for a Phase Transition......Page 270
7.22 The Controversy Around the Mechanism of Magnetic Coupling in ET Salts......Page 271
7.23 Trends......Page 272
7.24 Research Opportunities......Page 273
References......Page 274
8.1 Introduction......Page 278
8.2 Inorganic and Molecular Hybrid Magnetic Nanoporous Materials......Page 280
8.3.1 Carboxylic Ligands......Page 283
8.3.2 Nitrogen-based Ligands......Page 288
8.3.3 Paramagnetic Organic Polytopic Ligands......Page 290
8.4 Summary and Perspectives......Page 295
References......Page 297
9.1 Introduction......Page 300
9.2 Prussian Blue Analogs (PBA), Brief History, Synthesis and Structure......Page 301
9.2.1 Formulation and Structure......Page 302
9.2.2 Synthesis......Page 305
9.3 Magnetic Prussian Blues (MPB)......Page 307
9.3.1 Brief Historical Survey of Magnetic Prussian Blues......Page 308
9.3.2 Interplay between Models and Experiments......Page 310
9.3.3 Quantum Calculations......Page 323
9.4 High T(C) Prussian Blues (the Experimental Race to High Curie Temperatures)......Page 339
9.4.1 Chromium(II)–Chromium(III) Derivatives......Page 340
9.4.2 Manganese(II) –Vanadium(III) Derivatives......Page 341
9.4.3 The Vanadium(II) –Chromium(III) Derivatives......Page 342
9.4.4 Prospects in High-T(C) Magnetic Prussian Blues......Page 351
9.5.1 Photomagnetism: Light-induced Magnetisation......Page 355
9.5.4 Nanomagnetism......Page 356
9.5.5 Blossoming of Cyanide Coordination Chemistry......Page 357
References......Page 358
10.1 Introduction......Page 364
10.2 Non-critical-scaling: the Other Solutions of the Scaling Model......Page 365
10.3 Universality Classes and Lower Critical Dimensionality......Page 368
10.4 Phase Transition in Layered Compounds......Page 369
10.5 Description of Ferromagnetic Heisenberg Chains......Page 380
10.5.1 Application to Ferromagnetic S = 1 Chains......Page 383
10.6 Application to the Spin-1 Haldane Chain......Page 385
References......Page 392
Index......Page 396