Magnetism and Magnetic Materials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Covering basic physical concepts, experimental methods, and applications, this book is an indispensable text on the fascinating science of magnetism, and an invaluable source of practical reference data. Accessible, authoritative, and assuming undergraduate familiarity with quantum mechanics, electromagnetism and vectors, this textbook can be used on graduate courses. Emphasis is placed on practical calculations and numerical magnitudes - from nanoscale to astronomical scale - with a focus on modern manifestations, including spin electronic devices. Each self-contained chapter begins with a summary, and ends with exercises and further reading. The book is thoroughly illustrated with over 600 figures to help convey concepts and clearly explain ideas. Easily digestible tables and data sheets provide a wealth of useful information on magnetic materials, and 38 principal magnetic materials, and many more related compounds, are treated in detail.

Author(s): J. M. D. Coey
Publisher: Cambridge University Press
Year: 2010

Language: English
Pages: 633
Tags: Физика;Электродинамика / Электричество и магнетизм;

Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
List of tables of numerical data......Page 11
Preface......Page 13
Acknowledgements......Page 15
1.1 A brief history of magnetism......Page 17
1.2 Magnetism and hysteresis......Page 23
1.2.1 The ferromagnetic hysteresis loop......Page 24
1.2.3 Coercivity......Page 25
1.2.4 Anisotropy......Page 26
1.2.6 Other types of magnetic order......Page 27
1.2.7 The magnetic periodic table......Page 28
1.3.1 Overview of the world market......Page 29
1.3.2 Economics......Page 32
1.4 Magnetism, the felicitous science......Page 35
FURTHER READING......Page 37
EXERCISES......Page 38
2.1 The magnetic dipole moment......Page 40
2.1.1 Fields due to electric currents and magnetic moments......Page 42
2.2 Magnetic fields......Page 44
2.2.1 The B-field......Page 45
2.2.2 Uniform magnetic fields......Page 47
2.2.3 The H-field......Page 49
2.2.4 The demagnetizing field......Page 51
2.2.5 Internal and external fields......Page 54
2.2.6 Susceptibility and permeability......Page 55
2.3 Maxwell's equations......Page 57
2.4 Magnetic field calculations......Page 59
2.4.1 The magnetic potentials......Page 61
2.4.2 Boundary conditions......Page 63
2.4.3 Local magnetic fields......Page 64
2.5 Magnetostatic energy and forces......Page 66
2.5.1 Self-energy......Page 67
2.5.2 Energy associated with a magnetic field......Page 69
2.5.3 Energy in an external field......Page 71
2.5.4 Thermodynamics of magnetic materials......Page 73
2.5.5 Magnetic forces......Page 75
EXERCISES......Page 76
3 Magnetism of electrons......Page 78
3.1 Orbital and spin moments......Page 79
3.1.1 Orbital moment......Page 80
3.1.2 Spin moment......Page 81
3.1.3 Spin--orbit coupling......Page 82
3.1.4 Quantum mechanics of angular momentum......Page 83
3.2.1 Cyclotron orbits......Page 90
3.2.3 Orbital diamagnetism......Page 91
3.2.4 Curie-law paramagnetism......Page 93
3.2.5 The free-electron model......Page 94
3.2.6 Pauli susceptibility......Page 97
3.2.7 Electrical conduction......Page 98
3.2.8 Landau diamagnetism......Page 102
3.3 Theory of electronic magnetism......Page 103
3.3.1 Orbital moment......Page 104
3.3.2 Quantum oscillations......Page 105
3.3.3 Spin moment......Page 107
3.4 Magnetism of electrons in solids......Page 108
3.4.1 Localized and delocalized electrons......Page 110
FURTHER READING......Page 111
EXERCISES......Page 112
4.1 The hydrogenic atom and angular momentum......Page 113
4.2 The many-electron atom......Page 116
4.2.1 Spin-orbit coupling......Page 119
4.2.2 The Zeeman interaction......Page 120
4.3 Paramagnetism......Page 122
4.3.1 Brillouin theory......Page 123
4.3.2 Langevin theory......Page 126
4.3.4 Adiabatic demagnetization......Page 128
4.4 Ions in solids; crystal-field interactions......Page 130
4.4.1 Crystal fields......Page 131
4.4.2 One-electron states......Page 132
4.4.3 Many-electron states......Page 137
4.4.4 Single-ion anisotropy......Page 138
4.4.5 The spin Hamiltonian......Page 142
EXERCISES......Page 143
5 Ferromagnetism and exchange......Page 144
5.1.1 Molecular field theory......Page 145
5.1.2 Landau theory......Page 147
5.1.3 Stoner criterion......Page 150
5.2 Exchange interactions......Page 151
5.2.1 Exchange in insulators......Page 154
5.2.2 Exchange in metals......Page 156
5.3.1 Magnetic impurities in nonmagnetic metals......Page 160
5.3.2 Ferromagnetic metals......Page 163
5.3.3 Impurities in ferromagnets......Page 168
5.3.4 Half-metals......Page 170
5.3.5 The two-electron model......Page 171
5.3.6 The Hubbard model......Page 173
5.3.7 Electronic structure calculations......Page 174
5.4 Collective excitations......Page 177
5.4.1 Spin waves......Page 178
5.4.2 Stoner excitations......Page 182
5.4.4 Critical behaviour......Page 183
5.5.1 Shape anisotropy......Page 184
5.5.2 Magnetocrystalline anisotropy......Page 185
5.5.3 Origin of magnetocrystalline anisotropy......Page 187
5.5.4 Induced anisotropy......Page 188
5.5.5 Temperature dependence......Page 189
5.6.1 Magnetostriction......Page 190
5.6.2 Other magnetoelastic effects......Page 193
5.6.3 Magnetocaloric effect......Page 195
5.6.4 Magnetotransport......Page 197
5.6.5 Magneto-optics......Page 205
FURTHER READING......Page 209
EXERCISES......Page 210
6 Antiferromagnetism and other magnetic order......Page 211
6.1 Molecular field theory of antiferromagnetism......Page 212
6.1.2 Spin waves......Page 215
6.2 Ferrimagnets......Page 216
6.3 Frustration......Page 219
6.3.1 Cubic antiferromagnets......Page 220
6.3.3 Helimagnets......Page 223
6.3.4 Rare-earth metals......Page 224
6.4 Amorphous magnets......Page 225
6.4.1 One-network structures......Page 228
6.4.2 Two-network structures......Page 233
6.5 Spin glasses......Page 234
6.6.1 Heisenberg, xy and Ising models......Page 237
6.6.2 Critical behaviour......Page 238
6.6.3 Spin-glass theory......Page 241
6.6.4 Chains, ladders and sheets......Page 243
6.6.5 Quantum phase transitions......Page 245
EXERCISES......Page 246
7 Micromagnetism, domains and hysteresis......Page 247
7.1 Micromagnetic energy......Page 250
7.1.1 Exchange......Page 251
7.1.2 Anisotropy......Page 252
7.1.5 Magnetostriction......Page 253
7.1.6 Charge avoidance......Page 254
7.2 Domain theory......Page 255
7.2.1 Bloch wall......Page 256
7.2.2 Neel wall......Page 259
7.3 Reversal, pinning and nucleation......Page 260
7.3.1 Stoner--Wohlfarth model......Page 263
7.3.2 Reversal in thin films and small elements......Page 265
7.3.3 Perpendicular anisotropy......Page 268
7.3.4 Nucleation......Page 269
7.3.5 The two-hemisphere model......Page 270
7.3.6 Switching dynamics......Page 271
7.3.7 Domain-wall motion......Page 272
7.3.8 Real hysteresis loops......Page 274
7.3.9 Time dependence......Page 276
FURTHER READING......Page 278
EXERCISES......Page 279
8 Nanoscale magnetism......Page 280
8.1 Characteristic length scales......Page 281
8.2 Thin films......Page 283
8.2.1 Magnetization and Curie point......Page 285
8.2.2 Anisotropy and domain structure......Page 286
8.3.1 Direct exchange coupling; exchange bias......Page 290
8.3.2 Indirect exchange coupling......Page 296
8.3.3 Dipolar coupling......Page 298
8.3.4 Giant magnetoresistance......Page 299
8.3.5 Spin valves......Page 302
8.3.6 Magnetic tunnel junctions......Page 303
8.4 Wires and needles......Page 309
8.5 Small particles......Page 311
8.5.1 Superparamagnetism......Page 312
8.5.3 Molecular clusters......Page 314
8.6.1 Single-phase nanostructures......Page 315
8.6.2 Two-phase nanostructures......Page 317
EXERCISES......Page 319
9 Magnetic resonance......Page 321
9.1 Electron paramagnetic resonance......Page 323
9.2 Ferromagnetic resonance......Page 329
9.2.2 Damping......Page 331
9.2.3 Domain wall dynamics......Page 333
9.3 Nuclear magnetic resonance......Page 334
9.3.1 Hyperfine interactions......Page 336
9.3.2 Relaxation......Page 339
9.3.3 Pulsed NMR......Page 342
9.4.1 Mossbauer effect......Page 345
9.4.2 Muon spin rotation......Page 347
EXERCISES......Page 348
10.1 Materials growth......Page 349
10.1.1 Bulk material......Page 350
10.1.2 Thin films......Page 351
10.2.1 Generation......Page 356
10.2.2 Measurement......Page 358
10.3.1 Diffraction......Page 359
10.3.2 Spectroscopy......Page 364
10.4 Domain-scale measurements......Page 369
10.4.1 Stray-field methods......Page 370
10.4.2 Magneto-optic and electron-optic methods......Page 372
10.5 Bulk magnetization measurements......Page 376
10.5.1 Magnetization measurements: open circuit......Page 377
10.5.2 Magnetization measurements: closed circuit......Page 382
10.6.1 Thermal analysis......Page 384
10.6.2 Spin waves......Page 385
10.7.1 Static fields......Page 386
10.7.2 Time dependence......Page 388
EXERCISES......Page 389
11.1 Introduction......Page 390
11.1.1 Magnetic symmetry......Page 398
11.2 Iron group metals and alloys......Page 400
11.3 Rare-earth metals and intermetallic compounds......Page 414
11.4 Interstitial compounds......Page 423
11.5 Oxides with ferromagnetic interactions......Page 426
11.6 Oxides with antiferromagnetic interactions......Page 433
11.7 Miscellaneous materials......Page 448
FURTHER READING......Page 454
12 Applications of soft magnets......Page 455
12.1.1 Low-frequency losses......Page 457
12.1.2 High-frequency losses......Page 459
12.2 Soft magnetic materials......Page 464
12.3 Static applications......Page 469
12.4 Low-frequency applications......Page 470
12.5 High-frequency applications......Page 473
12.5.1 Microwave applications......Page 475
EXERCISES......Page 479
13 Applications of hard magnets......Page 480
13.1 Magnetic circuits......Page 482
13.2 Permanent magnet materials......Page 485
13.3.1 Uniform fields......Page 489
13.3.2 Nonuniform fields......Page 493
13.4.1 Variable flux sources......Page 497
13.4.3 Couplings and bearings......Page 499
13.5 Dynamic applications with active recoil......Page 501
13.5.1 Actuators......Page 502
13.5.2 Motors......Page 503
13.6 Magnetic microsystems......Page 507
EXERCISES......Page 508
14 Spin electronics and magnetic recording......Page 510
14.1.1 Conduction mechanisms......Page 513
14.1.2 Spin polarization......Page 517
14.1.3 Spin injection and spin accumulation......Page 520
14.1.4 Spin-transfer torque......Page 525
14.1.5 Spin currents......Page 529
14.2 Materials for spin electronics......Page 531
14.3 Magnetic sensors......Page 532
14.3.1 Noise......Page 535
14.4 Magnetic memory......Page 538
14.4.1 Magnetic random-access memory......Page 539
14.5.1 Logic......Page 541
14.5.2 Spin transistors......Page 544
14.6 Magnetic recording......Page 546
14.6.1 Write heads......Page 550
14.6.2 Magnetic media......Page 552
14.6.3 Read head......Page 553
14.6.4 Magneto-optic recording......Page 555
FURTHER READING......Page 556
EXERCISES......Page 557
15 Special topics......Page 558
15.1.1 Paramagnetic liquids......Page 559
15.1.2 Ferrofluids......Page 561
15.2.1 Electrodeposition......Page 563
15.2.2 Magnetic field effects......Page 564
15.3.1 Static levitation......Page 565
15.3.2 Radio-frequency levitation......Page 569
15.4.1 Magnetotaxis......Page 571
15.4.2 Cellular biology......Page 572
15.4.3 Labelling and assay......Page 574
15.4.4 Therapy and treatment......Page 576
15.4.5 Medical applications......Page 577
15.5.1 Rock magnetism......Page 581
15.5.2 The Earth's field......Page 584
15.5.3 The Earth's dynamo......Page 586
15.5.4 Paeleomagnetism......Page 588
15.5.5 Planetary magnetism......Page 590
15.5.6 Solar and stellar magnetism......Page 591
FURTHER READING......Page 594
EXERCISES......Page 595
Appendix A Notation......Page 596
B.1 SI units......Page 606
B.2 Cgs units......Page 607
B3.1 Dimensions......Page 608
B3.2 Examples......Page 610
Appendix C Vector and trigonometric relations......Page 611
Appendix D Demagnetizing factors for ellipsoids of revolution......Page 612
Appendix E Field, magnetization and susceptibility......Page 613
Appendix G Reduced magnetization of ferromagnets......Page 614
Appendix H Crystal .eld and anisotropy......Page 615
Appendix I Magnetic point groups......Page 616
Formula index......Page 617
Index......Page 620