The book is a technical guide for chemists and spectroscopists, and presents a concise description of magnetic circular dichroism (MCD) spectroscopy and how it has advanced the interpretation of molecular electronic spectra.Provides a practical guide to utilizing MCD spectroscopy for chemists starting in the fieldWritten by an expert with over twenty years of experience in the fieldHelps the reader to visualize the optical spectroscopic effects presented by MCD measurementsIncludes practical considerations for experimental MCD measurements based on the author's experienceWritten as a general discussion of the subject matter, with illustrative examples provided and discussed in the case studies to show the breadth of application of MCD measurements.
Author(s): W. Roy Mason
Edition: 1
Year: 2007
Language: English
Pages: 240
A PRACTICAL GUIDE TO MAGNETIC CIRCULAR DICHROISM SPECTROSCOPY......Page 3
CONTENTS......Page 7
PREFACE......Page 13
1. Introduction......Page 15
2.1. Linear Polarization and Plane Polarized Waves......Page 18
2.2. Circular Polarization and Circularly Polarized Waves......Page 19
2.3. Absorption Probabilities......Page 24
3.1. Born–Oppenheimer/Franck–Condon Approximation......Page 28
3.2. Rigid-Shift Approximation......Page 30
3.4. A Terms......Page 34
3.5. C Terms......Page 38
3.6. B Terms......Page 40
3.7. Pseudo A Terms: Overlapping B Terms......Page 43
3.9. Ground-State Near Degeneracy......Page 44
3.10. Deviation from the Linear Limit......Page 45
3.11. Zeeman Splitting ≥ Bandwidth......Page 46
3.12. Relative Magnitude of A, B, and C Terms......Page 47
3.14. Parameter Evaluation. Method of Moments......Page 48
4.1. MCD Spectrometer......Page 50
4.2. Detector Signals: Measurement of ∆A and A......Page 52
4.3. Computer Control and Data Acquisition......Page 54
4.4. Optical Elements and Stray Polarization Effects......Page 55
4.5. Calibration......Page 56
4.6. Magnet Systems......Page 57
5.1. Term Assignments......Page 60
5.3. The Wigner–Eckart Theorem and Reduced Matrix Elements (RMEs)......Page 61
5.4. MCD-Term Equations Involving RMEs......Page 62
5.5. Evaluation of RMEs for MCD Terms......Page 65
5.6. Evaluation of Matrix Elements for LCAO–MO Functions......Page 69
5.7. Spin–Orbit Coupling Considerations......Page 71
5.8. Herzberg–Teller Approximation for Vibronic Transitions......Page 73
6.1. A and B Terms for Diamagnetic Atoms and Molecules......Page 74
6.2. Atomic Mercury Vapor......Page 75
6.3. The Sodide Ion Na(–) in a Solid NH(3) Matrix......Page 77
6.4. Square Complexes of D(4h) Symmetry......Page 78
6.4.1. Ligand Field Spectra for PtCl4(2–)(4)......Page 79
6.4.2. Intense Bands and Allowed Transitions for Square Complexes......Page 80
6.4.3. LMCT Transitions for PtX4(2–)(4) and AuX(–)(4), X = Cl(–), Br(–), I(–)......Page 81
6.4.4. MLCT Transitions for Pt(CN)(2–)(4)......Page 84
6.4.5. d → p Transitions for Pt(NH(3))(2+)(4) and Pt(en)(2+)(2)......Page 87
6.5. Linear Two-Coordinate D(∞h) Complexes......Page 89
6.5.1. HgX(2) and AuX(–)(2), X = Cl(–), Br(–), and I(–)......Page 90
6.5.2. MLCT Transitions for Pt(PBu(t)(3))(2)......Page 92
6.6.2. LMCT Transitions for 4d(10) Complexes SbCl(–)(6) and SnCl(2–)(6)......Page 94
6.6.3. Metal-Centered s → p and LMCT Transitions in BiCl(3–)(6)......Page 96
6.6.4. MLCT and d → p Transitions for nd(6) M(CO)(6) and M(CN)(4–)(6) Complexes......Page 98
6.7. Metal Cluster Complexes......Page 100
6.7.1. MLCT Transitions for Triangular Pt(3)(CO)(3)(P(t-Bu)(3))(3)......Page 101
6.7.2. Metal-Centered Transitions in the Hg(3)(dppm)(4+)(3) Cluster Complex......Page 103
6.7.3. Pt → Au Framework and Intraframework Transitions in the Gold Cluster Complexes Pt(AuPPh(3))(2+)(8) and Au(AuPPh(3))(3+)(8)......Page 107
6.8. Triiodide Ion: An Example of a Pseudo A Term......Page 111
6.9. Methyl Iodide: n → σ* and Iodine-Based 5p Rydberg Transitions......Page 113
6.9.2. Rydberg Transitions for CH(3)I and CD(3)I in the Vacuum UV......Page 114
6.10.1. π → π* Transitions......Page 117
6.10.2. Rydberg Transitions......Page 122
6.11. D(4h) Cyclobutadiene Dianion Li(2)[C(4)(Me(3)Si)(4)]......Page 123
6.12. Zinc Phthalocyanine (Tetraazotetrabenzoporphyrin) Complex, ZnPc(2–)......Page 125
6.12.1. Vitreous Solution Spectra at Low Temperature......Page 126
6.12.2. Matrix-Isolated ZnPc(2–)......Page 127
6.13. Chlorophyll Q Band, An Example Using B Terms......Page 130
6.14. Surface Plasmon Band for Colloidal Gold Nanoparticles......Page 133
7.1.1. LMCT Transitions for Fe(CN)(3–)(6)......Page 135
7.1.2. LMCT Spectra for M(CN)(3–)(8), M = Mo(V) and W(V)......Page 139
7.2. Ground-State Magnetization for Unstable Metallocenes......Page 141
7.3. Determination of the Ground State for Matrix-Isolated Manganese(II) Phthalocyanine from C Terms......Page 143
7.4. Mononegative Cyclooctatetraene Ion (COT(–)) Matrix Isolated in Argon......Page 145
7.5. Ground-State Electronic and Structural Information from Variable Temperature and Field Studies of C Terms: Application to Non-Heme-Iron Enzymes......Page 149
7.6. Modeling the Structure of the Native Intermediate of the Multicopper Oxidase from Rhus Vernicifera Laccase Isolated from the Japanese Lacquer Tree......Page 152
7.7. High-Spin Metal Centers with Ground-State Spin > 1/2; Application to the Protein-Oxidized Rubredoxin, Desulfovibrio gigas......Page 156
7.8. MCD of Co(2+) as a Probe of Metal-Binding Sites in E. coli Methionyl Aminopeptidase......Page 160
7.9. Optically Detected Electron Paramagnetic Resonance (ODEPR) by Microwave-Modulated MCD: Application to the Optical Anisotropy of the Blue Copper Protein Pseudomonas aeruginosa Azurin......Page 164
7.10.1. Spin Polarization in the S = 10 Mixed Valence Mn(IV)–Mn(III) Cluster Complex [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)]......Page 169
7.10.2. Single Ion and Cluster Spin in the S = 6 [Cr(12)O(9)(O(2)CCMe(3))(15)] Cluster Complex......Page 172
7.11. Lanthanide Ions in Crystalline Environments......Page 176
7.11.1. Na(3)Ln(ODA)(3) • 2NaClO(4) • 6H(2)O (LnODA, Ln = Eu and Nd)......Page 177
7.11.2. LiErF(4), LiYF(4)/Eu(3+), and KY(3)F(10)/Eu(3+) Crystals......Page 179
8.1. MVCD......Page 185
8.1.1. Instrumentation......Page 186
8.1.3. MVCD for Metal Carbonyl Complexes M(CO)(6), M = Cr, Mo, and W......Page 187
8.1.4. Rotationally Resolved MVCD for Carbon Monoxide......Page 188
8.1.6. Rotationally Resolved MVCD for Acetylene and Deuterated Isotopomers......Page 190
8.2.1. XMCD Measurements......Page 193
8.2.3. Magnetic Properties of GdNi(2) Laves Phase......Page 194
8.2.4. XMCD Study of Re 5d Magnetism in the Sr(2)CrReO(6) Double Perovskite......Page 195
8.2.5. XMCD Study of Mn(III) and Mn(IV) Magnetic Contributions to the SMM [Mn(12)O(12)(CH(3)CO(2))(16)(H(2)O)(24)] • 2CH(3)COOH • 4H(2)O......Page 198
8.2.6. XMCD for Pseudomonas aeruginosa Nickel(II) Azurin (NiAz)......Page 201
9.2. MLD Terms and Term Parameters......Page 202
9.4. Some Examples of MLD Spectra......Page 206
9.4.1. Atomic Mercury Vapor......Page 207
9.4.2. Metal Atoms Isolated in Noble Gas Matrices......Page 209
9.4.3. Lanthanide Metal Ions in Solution: Ho(3+)......Page 211
9.4.4. Ferrocytochrome c and Deoxymyoglobin......Page 213
Table A.1. Function ψ and Operator Op Transformation Coefficients for Groups O and T(d)......Page 216
Table A.2. 3j, 2j, and 2jm Phases in the O and T(d) Bases for Single-Valued Irreps......Page 217
Table A.3. 3jm for O and T(d) Bases for Single-Valued Irreps......Page 218
Table A.4. 6j for O and T(d) Bases for Single-Valued Irreps......Page 219
Table B.2. 3j, 2j, and 2jm Phases in D(4) Bases for Single-Valued Irreps......Page 221
Table B.4. 6j in D(4) Bases for Single-Valued Irreps......Page 222
Table C.2. 3j, 2j, and 2jm Phases in D(3) Bases for Single-Valued Irreps......Page 223
Table C.4. 6j in D(3) Bases for Single-Valued Irreps......Page 224
Table D.1. Partial List of SO(3) O 3jm Factors ((S)(a(1))(ƒ)(ƒ(1))(S)(b(1)))(SO(3))(O) Involving Single-Valued Irreps......Page 225
Table D.2. Partial List of O D(4) 3jm Factors ((a(1))(a(2))(ƒ(1))(ƒ(2))(b(1))(b(2)))(O)(D(4)) Involving Single-Valued Irreps......Page 226
Reviews and References......Page 227
Index......Page 232