Machina Carnis: The Biochemistry of Muscular Contraction in its Historical Development

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Originally published in 1971, this is an account of the centuries of experiment and speculation that have led to our understanding of how muscles work. The book traces all the developments in the field since 1600 and devotes special attention to the breakthroughs made in the last century. It considers the nature of the muscle machine and its fuel, as well as the intricate regulation of energy supply under different conditions. It also examines the very varied kinds of muscle and the effects of some diseases on their structure and function. Finally it shows how the energy metabolism first elucidated for the mechanical work of muscle has been found to explain most of the other kinds of work done by cells, as in light production, secretion, ionic transport and electrical discharge. The biochemistry of muscle, carbohydrate metabolism and phosphorylations was the author's chosen field of research for over forty years.

Author(s): Dorothy M. Needham
Edition: 1
Publisher: Cambridge University Press
Year: 2009

Language: English
Pages: 819

Cover......Page 1
Frontmatter......Page 2
Contents......Page 8
Preface......Page 14
Acknowledgments......Page 16
List of abbreviations......Page 17
Antiquity and the Hellenistic age......Page 18
The Renaissance and the seventeenth century......Page 27
The chemical background......Page 44
The foundations of muscle biochemistry......Page 45
Early work on muscle metabolism, including the inogen conception......Page 50
Early applications of the first and second laws of thermodynamics to the organism......Page 56
Discovery of lactic acid and glycogen in muscle......Page 58
From the liquidation of inogen to the first balancing of the thermochemical books......Page 60
Mechanical events and heat production; the problem of the nature of the active muscle......Page 68
The discovery of the delayed anaerobic heat and its negative phase......Page 76
Fermentation and glycolysis......Page 78
The finding of adenylic acid; ammonia in contraction and recovery......Page 87
The discovery of phosphagen and early ideas of its function......Page 94
The discovery of adenylpyrophosphate......Page 101
Contraction without lactic acid......Page 102
The negative delayed heat......Page 113
The co-enzyme function of ATP......Page 115
Phosphocreatine breakdown as a recovery reaction......Page 119
The formation of 3-carbon compounds in glycolysis......Page 123
Phosphopyruvate and phosphate transfer......Page 127
Aldolase......Page 129
Esterification of inorganic phosphate......Page 131
Formation of free phosphate......Page 138
The energy-rich phosphate bond......Page 139
Early advances in the microscopy of muscle......Page 144
Parts of the muscle machine; first studies on the muscle proteins......Page 149
Application of the X-ray diffraction method to elucidation of muscle structure......Page 155
Theories of muscle contraction, 1870 to 1939......Page 157
The machine as enzyme and the fuel as substrate......Page 163
Parts of the muscle machine: recognition of the proteins myosin and actin......Page 165
The ATPase activity of myosin and actomyosin......Page 168
Myosin as an enzyme......Page 171
The action of ATP on actomyosin sols......Page 173
Interaction of actomyosin gels and ATP......Page 176
The effect of SH reagents on the properties of myosin sols and suspensions......Page 179
Contraction and ATP breakdown in vitro......Page 181
Background to the theories......Page 186
The theories......Page 194
Solubility and extractability of the structural proteins......Page 207
Myosin......Page 211
Actin......Page 229
Tropomyosin......Page 260
Discovery of the sliding mechanism......Page 270
A generalised picture of its mode of action......Page 274
First reactions to the theory......Page 275
Electron-microscope evidence for the double array of filaments and for the cross-bridges......Page 277
Relation of tension to sarcomere length......Page 278
Natural and synthetic myosin filaments and their interaction with actin......Page 281
The Z line and the M line; the S filaments......Page 283
The myofibrillar structure in rest and contraction......Page 285
Variants of the theory involving folding of one type of filament......Page 290
Two early theories based on the sliding mechanism......Page 296
Direct examination of changes in conformation of myosin when it interacts with ATP or actin......Page 301
Possible connection of specific amino acid residues with conformational changes......Page 303
The significance of substrate specificity, and of the action of certain modifiers of ATPase activity, for interpretation of the behaviour of the active centre......Page 304
Phosphorylation of myosin as an intermediate stage in its ATPase activity and as a possible key reaction in contraction......Page 309
The interaction of myosin and actin, particularly with regard to specific SH groups on the two proteins......Page 318
A possible part played by actin in the mechano-chemistry of contraction......Page 324
Protein factors modifying the interaction of myosin, actin and ATP......Page 328
Further theoretical considerations of the mechanism of sliding......Page 333
Prelude to electro-physiology......Page 341
The early experimental work on bio-electricity......Page 343
Membrane depolarisation and the action potential......Page 345
The relaxing factor and the importance of calcium......Page 349
The role of calcium ions in activation of the ATPactomyosin system page......Page 356
The question of a soluble relaxing factor......Page 359
The mechanism of the calcium pump......Page 360
The structure and function of the sarcoplasmic reticulum......Page 363
The role of calcium in the extracellular medium......Page 370
14 - Happenings in intact muscle: the challenge of adenosinetriphosphate breakdown......Page 372
Investigations before 1949......Page 373
Investigations after 1949......Page 381
Relation of metabolism to heat production and mechanical events......Page 389
The metabolism of muscles stretched during activity......Page 397
15 - Rigor and the chemical changes responsible for its onset......Page 400
The Pasteur Effect and the Meyerhof Cycle; metabolism during aerobic recovery......Page 408
The two aspects of respiration......Page 413
The respiratory chain......Page 416
The structure of the respiratory chain......Page 421
Preparation of carbohydrate, fat and protein for entry into the respiratory chain......Page 425
Conclusion......Page 438
Early evidence for oxidative phosphorylation......Page 440
The localisation of the phosphorylation sites in the respiratory chain......Page 442
The mechanism of oxidative phosphorylation at substrate level......Page 444
The mechanism of phosphorylation in the respiratory chain......Page 447
Coupling factors......Page 454
Discussion......Page 455
18 - The regulation of carbohydrate metabolism for energy supply to the muscle machine......Page 458
The structure of glycogen and the mechanism of its breakdown by phosphorylase......Page 459
Activation and inactivation of phosphorylase......Page 462
Activation and inhibition of phosphofructokinase page......Page 467
Control of glucose metabolism in muscle......Page 470
Regulation of carbohydrate breakdown during anaerobic contraction and return to rest......Page 472
The pathway of glycogen synthesis from glucose, and its control......Page 474
Gluconeogenesis......Page 481
Discussion......Page 482
Red and white muscle; early work......Page 484
Red and white muscle; later work......Page 486
Slow fibres of vertebrate striated muscle......Page 497
Heart muscle......Page 499
Developing muscle......Page 503
Discussion......Page 514
20 - Enzymic and other effects of denervation, cross-innervation and repeated stimulation......Page 517
Biochemical effects of denervation......Page 518
Biochemical effects of cross-innervation of fast and slow muscles......Page 522
Enzymic adaptation to contractile activity......Page 526
Progressive muscular dystrophy......Page 532
Glycogen storage diseases......Page 542
22 - Contraction in muscles of invertebrates......Page 547
The proteins of the contractile mechanism......Page 548
Energy provision......Page 551
The holding mechanism......Page 556
Recent considerations of the phasic response......Page 565
The contractile mechanism of insect fibrillar or asynchronous muscle......Page 567
Introduction......Page 578
Proteins of the contractile mechanism......Page 581
Energy supply......Page 592
Excitation -- contraction coupling......Page 603
Mechanism of contraction......Page 606
24 - Energy provision and contractile proteins in non-muscular functions......Page 615
Motility and locomotion......Page 616
Active transport; bioluminescence; electric discharge......Page 628
The perspective surveyed......Page 636
References......Page 640
Author index......Page 780
Subject index......Page 800