MA257: Introduction to Number Theory

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): J. E. Cremona
Series: lecture notes
Edition: version 5 Jan 2018
Year: 2018

Language: English
Commentary: Downloaded from http://homepages.warwick.ac.uk/staff/J.E.Cremona/courses/MA257/ma257.pdf
Pages: 48

0. Introduction: What is Number Theory?......Page 2
Basic Notation......Page 3
1.1. Divisibility in Z......Page 4
1.2. Greatest Common Divisors in Z......Page 5
1.3. The Euclidean Algorithm in Z......Page 6
1.4. Primes and unique factorization......Page 7
1.5. Unique Factorization Domains......Page 9
2.1. Definition and Basic Properties......Page 14
2.2. The structure of Z/mZ......Page 15
2.3. Euler's, Fermat's and Wilson's Theorems......Page 16
2.4. Some Applications......Page 18
2.5. The Chinese Remainder Theorem or CRT......Page 19
2.6. The structure of Um......Page 21
3.2. Legendre Symbols and Euler's Criterion......Page 23
3.3. The Law of Quadratic Reciprocity......Page 24
4.2. Sums of squares......Page 28
4.3. Legendre's Equation......Page 30
4.4. Pythagorean Triples......Page 32
4.5. Fermat's Last Theorem......Page 33
4.6. Proof of Minkowski's Theorem......Page 35
5.1. Motivating examples......Page 37
5.2. Definition of Zp......Page 38
5.3. The ring Zp......Page 39
5.4. The field Qp......Page 42
5.5. Squares in Zp......Page 45
5.6. Hensel lifting......Page 47