Lumped Elements for RF and Microwave Circuits

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

With entirely new chapters and fully updated content, this Second Edition provides in-depth coverage of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elements, design trade-offs, and an up-to-date list of references, the book helps readers understand the value of lumped elements in the design of RF, microwave, and millimeter wave components and circuits. The treatment of standalone lumped elements and their circuits using MIC, MMIC and RFIC technologies is well balanced, with detailed information on a broader range RFICs that was not available when the popular first edition was published. The fundamentals, equations, modeling, examples, references, and overall procedures to design, test, and produce microwave components that are indispensable in industry and academia today are discussed in this comprehensive volume. With its superb organization and expanded coverage, this is a must-have resource for practicing engineers and researchers in industry, government, and university settings, as well as microwave engineers working in the antenna area. Students will also find it a useful reference with its clear explanations, multiple examples, and practical modeling guidelines.

Author(s): Inder J. Bahl
Edition: 2
Publisher: Artech House
Year: 2022

Language: English
Pages: 592
City: Boston

Lumped Elements for RF
and Microwave Circuits Second Edition
Contents
Preface
Chapter 1
Introduction
1.1 History of Lumped Elements
1.2 Why Use Lumped Elements for RF and Microwave Circuits?
1.3 L, C, R Circuit Elements
1.4 Basic Design of Lumped Elements
1.4.1 Capacitor
1.4.2 Inductor
1.4.3 Resistor
1.5 Lumped-Element Modeling
1.6 Fabrication
1.7 Applications
References
Chapter 2 Inductors
2.1 Introduction
2.2 Basic Definitions
2.2.1 Inductance
2.2.2 Magnetic Energy
2.2.3 Mutual Inductance
2.2.4 Effective Inductance
2.2.5 Impedance
2.2.6 Time Constant
2.2.7 Quality Factor
2.2.8 Self-Resonant Frequency
2.2.9 Maximum Current Rating
2.2.10 Maximum Power Rating
2.2.11 Other Parameters
2.3 Inductor Configurations
2.4 Inductor Models
2.4.1 Analytical Models
2.4.2 Coupled-Line Approach
2.4.3 Mutual Inductance Approach
2.4.4 Numerical Approach
2.4.5 Measurement-Based Model
2.5 Coupling Between Inductors
2.5.1 Low-Resistivity Substrates
2.5.2 High-Resistivity Substrates
2.6 Electrical Representations
2.6.1 Series and Parallel Representations
2.6.2 Network Representations
References
Chapter 3
Printed Inductors
3.1 Inductors on Si Substrate
3.1.1 Conductor Loss
3.1.2 Substrate Loss
3.1.3 Layout Considerations
3.1.4 Inductor Model
3.1.5 Q-Enhancement Techniques
3.1.6 Stacked-Coil Inductor
3.1.7 Temperature Dependence
3.2 Inductors on GaAs Substrate
3.2.1 Inductor Models
3.2.2 Figure of Merit
3.2.3 Comprehensive Inductor Data
3.2.4 Q-Enhancement Techniques
3.2.5 Compact Inductors
3.2.6 High Current Handling Capability Inductors
3.3 Printed Circuit Board Inductors
3.4 Hybrid Integrated Circuit Inductors
3.4.1 Thin-Film Inductors
3.4.2 Thick-Film Inductors
3.4.3 LTCC Inductors
3.5 Ferromagnetic Inductors
References
Chapter 4
Wire Inductors
4.1 Wire-Wound Inductors
4.1.1 Analytical Expressions
4.1.2 Compact High-Frequency Inductors
4.2 Bond Wire Inductor
4.2.1 Single and Multiple Wires
4.2.2 Wire Near a Corner
4.2.3 Wire on a Substrate Backed by a Ground Plane
4.2.4 Wire Above a Substrate Backed by a Ground Plane
4.2.5 Curved Wire Connecting Substrates
4.2.6 Twisted Wire
4.2.7 Maximum Current Handling of Wires
4.3 Wire Models
4.3.1 Numerical Methods for Bond Wires
4.3.2 Measurement-Based Model for Air Core Inductors
4.3.3 Measurement-Based Model for Bond Wires
4.4 Broadband Inductors
4.5 Magnetic Materials
References
Chapter 5
Capacitors
5.1 Introduction
5.2 Capacitor Parameters
5.2.1 Capacitor Value
5.2.2 Effective Capacitance
5.2.3 Tolerances
5.2.4 Temperature Coefficient
5.2.5 Quality Factor
5.2.6 Equivalent Series Resistance
5.2.7 Series and Parallel Resonances
5.2.8 Dissipation Factor or Loss Tangent
5.2.9 Time Constant
5.2.10 Rated Voltage
5.2.11 Rated Current
5.3 Chip Capacitor Types
5.3.1 Multilayer Dielectric Capacitor
5.3.2 Multiplate Capacitor
5.4 Discrete Parallel Plate Capacitor Analysis
5.4.1 Vertically Mounted Series Capacitor
5.4.2 Flat-Mounted Series Capacitor
5.4.3 Flat-Mounted Shunt Capacitor
5.4.4 Measurement-Based Model
5.5 Voltage and Current Ratings
5.5.1 Maximum Voltage Rating
5.5.2 Maximum RF Current Rating
5.5.3 Maximum Power Dissipation
5.6 Capacitor Electrical Representation
5.6.1 Series and Shunt Connections
5.6.2 Network Representations
References
Chapter 6
Monolithic Capacitors
6.1 MIM Capacitor Models
6.1.1 Simple Lumped Equivalent Circuit
6.1.2 Single Microstrip-Based Distributed Model
6.1.3 EC Model for MIM Capacitor on Si
6.1.4 EM Simulations of Capacitors
6.2 High-Density Capacitors
6.2.1 Multilayer Capacitors
6.2.2 Ultra-Thin-Film Capacitors
6.2.3 High-K Capacitors
6.2.4 Fractal Capacitors
6.2.5 Ferroelectric Capacitors
6.3 Capacitor Shapes
6.3.1 Rectangular Capacitors
6.3.2 Circular Capacitors
6.3.3 Octagonal Capacitors
6.4 Design Considerations
6.4.1 Q-Enhancement Techniques
6.4.2 Tunable Capacitor
6.4.3 Maximum Power Handling
References
Chapter 7
Interdigital Capacitors
7.1 Interdigital Capacitor Models
7.1.1 Approximate Analysis
7.1.2 Full-Wave Analysis
7.1.3 Measurement-Based Model
7.2 Design Considerations
7.2.1 Compact Size
7.2.2 Multilayer Capacitor
7.2.3 Q-Enhancement Techniques
7.2.4 Voltage Tunable Capacitor
7.2.5 High-Voltage Operation
7.3 Interdigital Structure as a Photodetector
References
Chapter 8
Resistors
8.1 Introduction
8.2 Basic Definitions
8.2.1 Power Rating
8.2.2 Temperature Coefficient
8.2.3 Resistor Tolerances
8.2.4 Maximum Working Voltage
8.2.5 Maximum Frequency of Operation
8.2.6 Stability
8.2.7 Noise
8.2.8 Maximum Current Rating
8.3 Resistor Types
8.3.1 Chip Resistors
8.3.2 MCM Resistors
8.3.3 Monolithic Resistors
8.4 High-Power Resistors
8.5 Resistor Models
8.5.1 EC Model
8.5.2 Distributed Model
8.5.3 Meander Line Resistor
8.6 Resistor Representations
8.6.1 Network Representations
8.6.2 Electrical Representations
8.7 Effective Conductivity
8.8 Thermistors
References
Chapter 9 Via Holes
9.1 Types of Via Holes
9.1.1 Via Hole Connection
9.1.2 Via Hole Ground
9.2 Via Hole Models
9.2.1 Analytical Expression
9.2.2 Quasi-static Method
9.2.3 Parallel Plate Waveguide Model
9.2.4 Method of Momen
9.2.5 Measurement-Based Model
9.3 Via Fence
9.3.1 Coupling Between Via Holes
9.3.2 Radiation from Via Ground Plug
9.4 Plated Heat Sink Via
9.5 Via Hole Layout
9.6 Silicon Vias
References
Chapter 10 Airbridges and Dielectric Crossovers
10.1 Airbridge and Crossov
10.2 Analysis Techniques
10.2.1 Quasi-static Method
10.2.2 Full-Wave Analysis
10.3 Models
10.3.1 Analytical Model
10.3.2 Measurement-Based Model
References
Chapter 11 Inductor Transformers and Baluns
11.1 Basic Theory
11.1.1 Parameters Definition
11.1.2 Analysis of Transformers
11.1.3 Ideal Transformers
11.1.4 Equivalent Circuit Representation
11.1.5 Equivalent Circuit of a Practical Transformer
11.1.6 Wideband Impedance Matching Transformers
11.1.7 Types of Transformers
11.2 Wire-Wrapped Transformers
11.2.1 Tapped Coil Transformers
11.2.2 Bond Wire Transformer
11.3 Transmission-Line Type Transformers
11.4 Parallel Conductor Winding Transformers on Si Substrate
11.5 Spiral Transformers on GaAs Substrate
11.6 Baluns
11.6.1 Lumped-Element LP/HP Filter Baluns
11.6.2 Lumped-Element Power Divider and 180◦ Hybrid Baluns
11.6.3 Coil Transformer Baluns
11.6.4 Transmission-Line Baluns
11.6.5 Marchand Baluns
11.6.6 Common-Mode Rejection Ratio
References
Chapter 12
Lumped-Element Passive Components
12.1 Impedance Matching Techniques
12.1.1 One-Port and Two-Port Networks
12.1.2 Lumped-Element Narrowband Matching Techniques
12.1.3 Lumped-Element Wideband Matching Techniques
12.2 90◦ Hybrids
12.2.1 Broadband 3-dB 90◦ Hybrid
12.2.2 Reconfigurable 3-dB 90◦ Hybrid
12.2.3 Dual-Band 3-dB 90◦ Hybrid
12.2.4 Differential 3-dB 90◦ Hybrid
12.3 180◦ Hybrids
12.3.1 Compact Lumped-Element 3-dB 180◦ Hybrid
12.3.2 Wideband Lumped-Element Differential 3-dB 180◦ Hybrids
12.4 Directional Couplers
12.4.1 Transformer Directional Couplers
12.4.3 Differential Directional Couplers
12.4.4 Directional Coupler with Impedance Matching
12.5 Power Dividers/Combiners
12.5.1 Power Dividers with 90◦ and 180◦ Phase Difference
12.5.2 Broadband 2-Way and 4-Way Power Dividers
12.5.3 Compact 2-Way and 4-Way Power Dividers
12.5.4 Dual-Band Power Dividers
12.5.5 Differential Power Dividers
12.6 Filter
12.6.1 Ceramic Lumped-Element LTCC Bandpass Filters
12.6.2 Dual-Band Filters
12.6.3 Reconfigurable and Switchable Filters
12.6.4 High Selectivity Compact BPF
12.6.5 Differential-Mode and Common-Mode Rejection Filters
12.6.6 Tunable BPF with Constant Bandwidth
12.6.7 Compact Si Bandpass Filter
12.6.8 Compact CMOS Bandpass Filters
12.7 Biasing Networks
12.7.1 Biasing of Diodes and Control Components
12.7.2 Biasing of Active Circuits
References
Chapter 13 Lumped-Element Control Components
13.1 Switches
13.1.1 Switch Configurations
13.1.2 Broadband Switches
13.1.3 MESFET Switches
13.1.4 HEMT Switches
13.1.5 CMOS Switches
13.1.6 GaN HEMT Switches
13.1.7 Comparison of Switch Technologies
13.2 Phase Shifters
13.2.1 Types of Phase Shifters
13.2.2 Switched-Network Phase Shifters
13.2.3 Multibit Phase Shifter Circuits
13.2.4 MESFET/HEMT Multibit Phase Shifters
13.2.5 CMOS Phase Shifters
13.2.6 Analog Phase Shifters
13.2.7 Broadband Phase Shifters
13.2.8 Ultrawideband Phase Shifters
13.2.9 Millimeter-Wave Phase Shifters
13.2.10 Active Phase Shifters
13.3 Attenuators
13.3.1 Attenuator Configurations
13.3.2 Multibit Attenuators
13.3.3 GaAs MMIC Step Attenuators
13.3.4 Si CMOS Step Attenuators
13.3.5 Variable Voltage Attenuators
13.3.6 GaN HEMT Attenuator
13.3.7 Phase Compensated Attenuators
13.3.8 CMOS Attenuator with Integrated Switch
13.4 Limiters
13.4.1 Limiter Types
13.4.2 Diode Limiter Circuits
13.4.3 FET Switch Limiter Circuits
13.4.4 Matched Limiters
13.4.5 Limiter/LNA
References
Chapter 14
Lumped-Element Active Circuits
14.1 Amplifiers
14.1.1 Low-Noise Amplifiers
14.1.2 Power Amplifiers
14.1.3 Differential Amplifiers
14.1.4 Buffer Amplifiers
14.2 Oscillators
14.2.1 Oscillator Configurations
14.2.2 Operation of Oscillators
14.2.3 Phase Noise in Oscillators
14.2.4 Oscillator Design
14.2.5 GaAs HEMT and HBT-HEMT Based VCOs
14.2.6 Si-Based VCOs
14.3 Mixers
14.3.1 Passive Mixer Circuits
14.3.2 Active Mixer Circuits
14.4 Frequency Multipliers
14.4.1 Introduction
14.4.2 Diode Multipliers
14.4.3 Transistor Multipliers
14.4.4 Frequency Doublers
14.4.5 Frequency Triplers
14.4.6 Frequency Quadrupler and Higher-Order Multipliers
14.5 Frequency Dividers
14.5.1 Regenerative Frequency Dividers
14.5.2 Injection-Locked Frequency Dividers
14.5.3 Divide-by-3 Injection-Locked Frequency Dividers
14.5.4 Divide-by-4 and Higher-Order Dividers
14.6 Other Active Circuits
14.6.1 Active Baluns
14.6.2 Active Inductors
14.6.3 Active Capacitors
14.6.4 Active Filters
14.6.5 Active Circulators
References
About the Author
Index