LTE-Advanced DRX Mechanism for Power Saving

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Resource allocation and power optimization is a new challenge in multimedia services in cellular communication systems.  To provide a better end-user experience, the fourth generation (4G) standard Long Term Evolution/Long Term Evolution-Advanced (LTE/LTE-Advanced) has been developed for high-bandwidth mobile access to accommodate today’s data-heavy applications. LTE/LTE-Advanced has adopted discontinuous reception (DRX) to extend the user equipment’s battery lifetime, thereby further supporting various services and large amounts of data transmissions.
By introducing the basics of mathematical analysis and performance evaluation of power-saving mechanisms in 3rd generation partnership project (3GPP) LTE and LTE-Advanced networks, the authors of this book aim to describe novel algorithms which could have better performance capabilities than previous methods.
Chapter 1 gives the basic theory description of the 3GPP LTE network and 3GPP DRX power saving mechanism, empirical measurements of LTE network traffic and an overview of the basic LTE DRX model in the field of power saving techniques. Chapter 2 provides steps for deriving a 2-state analytical model up to a 4-state DRX model. The third and final chapter summarizes alternative methods for the implementation of LTE DRX.

Contents

1. Basic Theory.
2. Analytical Semi-Markov Power-Saving Models.
3. Other Approaches for LTE Power Saving.

About the Authors

Scott A. Fowler is Associate Professor at Linköping University, Sweden, working with the Mobile Telecommunication (MT) group. He has served on several IEEE conferences/workshops as TPC to Chair, including Special Interest Groups coordinator for IEEE Communications Software (CommSoft) Technical Committee since 2012. His research interests include Quality of Service (QoS) support over heterogeneous networks, computer networks (wired, wireless), energy management, mobile computing, pervasive/ubiquitous, performance evaluation of networks and security.
Abdelhamid Mellouk is Full Professor at the University of Paris-Est Créteil VdM (UPEC, ex. Paris 12), Networks & Telecommunications (N&T) Department (IUT C/V) and LiSSi Laboratory in France. He is a founder of the Network Control Research activity with extensive international academic and industrial collaborations. His general area of research is in adaptive real-time control for high-speed new generation dynamic wired/wireless networking in order to maintain acceptable Quality of Service/Experience for added-value services.
Naomi Yamada is a research associate at Linköping University, Sweden.

Content:
Chapter 1 Basic Theory (pages 1–31): Scott A. Fowler, Abdelhamid Mellouk and Naomi Yamada
Chapter 2 Analytical Semi‐Markov Power‐Saving Models (pages 33–70): Scott A. Fowler, Abdelhamid Mellouk and Naomi Yamada
Chapter 3 Other Approaches for LTE Power Saving (pages 71–94): Scott A. Fowler, Abdelhamid Mellouk and Naomi Yamada

Author(s): Scott A. Fowler, Abdelhamid Mellouk, Naomi Yamada(auth.)
Edition: 1
Publisher: Wiley-ISTE
Year: 2014

Language: English
Pages: 128
Tags: Связь и телекоммуникации;Мобильная связь;Сети мобильной связи;