Low-Dimensional Chalcohalide Nanomaterials: Energy Conversion and Sensor-Based Technologies

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book provides a deep insight into recent achievements in synthesis, investigation, and applications of the low-dimensional chalcohalide nanomaterials. The large number of interesting phenomena occur in these compounds, including ferroelectric, piezoelectric, pyroelectric, electrocaloric, Seebeck, photovoltaic, and ferroelectric-photovoltaic effects. Furthermore, the outstanding photoelectrochemical, photocatalytic, and piezocatalytic properties of the chalcohalide nanomaterials have been revealed. Since many chalcohalide semiconductors possess both photoactive and ferroelectric properties, they are recognized as photoferroelectrics. 

It presents an overview of fabrication of chalcohalide nanomaterials using different methods: mechanical milling of bulk crystals, liquid-phase exfoliation, vapor phase growth, hydro/solvothermal methods, synthesis under ultrasonic irradiation, microwave synthesis, laser/heat-induced crystallization, electrospinning, successive ionic layer adsorption and reaction. The strategies of the chalcohalide nanomaterials processing for construction of functional devices are presented.

The book describes solution processing for thin films preparation, spin-coating deposition of polymer composites, solution casting, films deposition via drop-casting, high pressure compression of nanowires into the bulk samples, pressure assisted sintering, and electric field assisted alignment of nanowires. The applications of the chalcohalide nanomaterials for mechanical/thermal energy harvesting and energy storage are presented. Major challenges and emerging trends in fabrication, characterization, and future applications of low-dimensional chalcohalide nanomaterials are discussed. 

A wealth of information for scholars, graduate students, and engineers involved in research of nanomaterials.

Author(s): Krystian Mistewicz
Series: NanoScience and Technology
Publisher: Springer
Year: 2023

Language: English
Pages: 202
City: Cham

Preface
Contents
1 Introduction
1.1 General Introduction to Chalcohalide Materials
1.2 Fundamentals of the Ferroelectric Materials and Their Basic Properties
1.3 Ferroelectricity at the Nanoscale
1.4 Engineering for Tuning of Phase Transition Temperature
References
2 The Methods of Fabrication of the Chalcohalide Nanostructures
2.1 Mechanical Milling of Bulk Crystals
2.2 Liquid-Phase Exfoliation
2.3 Vapor Phase Growth
2.4 Hydrothermal and Solvothermal Methods
2.5 Synthesis Under Ultrasonic Irradiation
2.6 Microwave Synthesis
2.7 Laser/Heat-Induced Crystallization
2.8 Electrospinning
2.9 Successive Ionic Layer Adsorption and Reaction
References
3 Strategies for Incorporation of Chalcohalide Nanomaterials into the Functional Devices
3.1 Solution Processing for Thin Films Preparation
3.2 The Spin-Coating Deposition of Polymer Composites
3.3 Solution Casting
3.4 The Films Deposition Via Drop-Casting
3.5 High Pressure Compression of Nanowires into the Bulk Samples
3.6 A Pressure Assisted Sintering
3.7 Electric Field Assisted Alignment of Nanowires
References
4 Devices for Energy Harvesting and Storage
4.1 Piezoelectric Nanogenerators
4.1.1 An Introduction to the Piezoelectric Nanogenerators
4.1.2 Devices for Detection of Low Frequency Vibrations and Mechanical Energy Harvesting
4.1.3 Ultrasonic Sensors
4.2 Triboelectric Nanogenerators
4.3 Pyroelectric Nanogenerators
4.4 Supercapacitors
References
5 Photovoltaic Devices and Photodetectors
5.1 Ferroelectric-Photovoltaic Effect
5.2 Solar Cells
5.2.1 The Chalcohalide Compounds as Promising Photovoltaic Absorbers
5.2.2 Antimony Chalcohalide Based Solar Cells
5.2.3 Bismuth Chalcohalide Based Solar Cells
5.3 Photodetectors
5.4 Detectors of Ionizing Radiation
References
6 Gas Nanosensors
6.1 Conductometric Sensors
6.2 Photoconductive Sensors
6.3 Impedance Sensors
6.4 Quartz Crystal Microbalance Sensors
References
7 The Catalysts for an Environmental Remediation
7.1 Photocatalysis
7.1.1 Introduction to Photocatalysis
7.1.2 Antimony Chalcohalide Based Photocatalysts
7.1.3 Bismuth Chalcohalide Based Photocatalysts
7.1.4 Heterostructured and Composite Photocatalysts
7.2 Piezo- and Sonocatalysis
References
8 Conclusions and Future Prospects
8.1 A Summary on the Recent Development of Low-Dimensional Chalcohalides
8.2 Author Contribution to Progress in Chalcohalide Nanomaterials
8.3 The Main Challenges
8.4 Future Trends and Outlooks
References