Low Carbon Energy Technologies for Sustainable Energy Systems examines, investigates, and integrates current research aimed at operationalizing low carbon technologies within complex transitioning energy economies. Scholarly research has traditionally focused on the technical aspects of exploitation, R&D, operation, infrastructure, and decommissioning, while approaches which can realistically inform their reception and scale-up across real societies and real markets are piecemeal and isolated in separate literatures. Addressing both the technical foundations of each technology together with the sociotechnical ways in which they are spread in markets and societies, this work integrates the technoeconomic assessment of low carbon technologies with direct discussion on legislative and regulatory policies in energy markets. Chapters address issues, such as social acceptance, consumer awareness, environmental valuation systems, and the circular economy, as low carbon technologies expand into energy systems sustainability, sensitivity, and stability. This collective research work is relevant to both researchers and practitioners working in sustainable energy systems. The combination of these features makes it a timely book that is useful and attractive to university students, researchers, academia, and public or private energy policy makers.
Author(s): Grigorios L. Kyriakopoulos
Publisher: Academic Press
Year: 2021
Language: English
Pages: 418
City: London
Front-matter_2021_Low-Carbon-Energy-Technologies-in-Sustainable-Energy-Syste
Copyright_2021_Low-Carbon-Energy-Technologies-in-Sustainable-Energy-Systems
Contributors_2021_Low-Carbon-Energy-Technologies-in-Sustainable-Energy-Syste
Preface_2021_Low-Carbon-Energy-Technologies-in-Sustainable-Energy-Systems
1---The-role-of-resource-recovery-technologies-in_2021_Low-Carbon-Energy-Tec
1 - The role of resource recovery technologies in reducing the demand of fossil fuels and conventional fossil-based min...
Chapter outline
1 - Introduction
1.1 - Urban wastewater and energy resource recovery
1.2 - The global demand of P-fertilizers and the need of nutrient recovery
2 - Methods for energy and resource recovery
2.1 - Anaerobic digestion
2.2 - Incineration and co-incineration
2.3 - Gasification
2.4 - Pyrolysis
2.5 - Wet air oxidation
2.6 - Supercritical water oxidation
2.7 - Hydrothermal treatment
3 - Energy recovery
3.1 - Biogas
3.2 - Bio-hydrogen
3.3 - Bio-diesel
4 - Nutrients recovery
4.1 - Ammonia recovery
4.2 - Struvite precipitation
5 - Integrated resource recovery in a future smart city
References
2---Increasing-efficiency-of-mining-e_2021_Low-Carbon-Energy-Technologies-in
2 - Increasing efficiency of mining enterprises power consumption
Chapter outline
1 - Significance
2 - The degree of elaboration of the issue
3 - Theoretical part
4 - Solution method
5 - Discussion of the results
6 - Conclusion
References
3---The-contribution-of-energy-crop_2021_Low-Carbon-Energy-Technologies-in-S
3 - The contribution of energy crops to biomass production
Chapter outline
1 - Introduction
1.1 - General
1.2 - Energy production and demands
1.3 - Biomass production
1.4 - Biofuel
1.5 - Energy crops distribution, contribution, and utilization
1.5.1 - Energy crops in Sweden
1.5.2 - Energy crops in Austria
1.5.3 - Energy crops in Germany and Denmark
1.5.4 - Energy crops in United Kingdom
1.5.5 - Energy crops in Poland
1.5.6 - Energy crops in Czech Republic
1.5.7 - Energy crops in Ukraine
1.5.8 - Energy crops in Lithuania
1.5.9 - Energy crops in Italy
1.5.10 - Energy crops in Spain
1.5.11 - Energy crops in Greece
1.5.12 - Energy crops in Turkey
1.5.13 - Energy crops in United States of America and Canada
1.5.14 - Energy crops in Mexico
1.5.15 - Energy crops in Brazil
1.5.16 - Energy crops in China
1.5.17 - Energy crops in Pakistan
1.5.18 - Energy crops in Iran
1.5.19 - Energy crops in India
1.5.20 - Energy crops in Thailand
1.5.21 - Energy crops in Malaysia
2 - Biomass conversion to biomass production
3 - Conclusions
Websites
References
4---Public-attitudes-toward-the-major-renewable_2021_Low-Carbon-Energy-Techn
2 - Public attitudes toward the major renewable energy types in the last 5 years: A scoping review of the literature
Chapter outline
1 - Introduction
2 - Methodology
3 - Results
3.1 - Attitudes to renewable energy sources in general
3.2 - Attitudes to wind energy
3.3 - Attitudes to solar energy
4 - Discussion and conclusions
References
5---Understanding-willingness-to-pay-for-renewa_2021_Low-Carbon-Energy-Techn
5 - Understanding willingness to pay for renewable energy among citizens of the European Union during the period 2010–20
Chapter outline
1 - Introduction
2 - Methodology
3 - Results
3.1 - Estimations of willingness to pay for renewable energy in European Union
3.2 - Factors affecting the willingness or unwillingness to pay for renewable energy
3.3 - Methodologies employed in WTP studies
4 - Discussion
5 - Conclusions
References
6---Linking-energy-homeostasis--exergy-management--and-_2021_Low-Carbon-Ener
6 - Linking energy homeostasis, exergy management, and resiliency to develop sustainable grid-connected distributed gen...
Chapter outline
1 - Introduction
The general concepts of energy homeostasis and homeostaticity in the control and energy management of ele...
1.1 - Climate change and the energy crisis
Building the case for sustainable energy systems (SES) in the electric utilitie...
1.2 - Electric power systems (EPS) decentralization for growing environmental threats
The hurdles of electric power system...
1.3 - Role of the microgrid
The shift in microgrid trends, from a more passive role, originally thought to contribute marg...
2 - Resiliency and energy homeostasis
How to engineer resiliency in sustainable energy systems. Smart energy systems: the ...
2.1 - Homeostasis-based control systems in the design of SES
The need to incorporate homeostasis-based control systems in ...
3 - Grid-tied microgrids with and without energy storage
When, where and how to apply each case: The homeostasis-based pow...
3.1 - Building sustainability in energy systems
The role of exergy, exergy management, and how to apply it in on-grid micr...
3.2 - Sustainability performance indicators
The homeostatic Index and the Grid_frac functions in SHES
3.3 - Control methods of EPS
More traditional control methods of EPS and how the two may combine
4 - Sustainable hybrid energy systems (SHES) as living open systems
The role of exergy, exergy management and how to apply...
4.1 - HC system installed in a SHES
An example of HC system installed in a SHES in the form of an electric utility’s run m...
4.2 - Discussion
5 - Conclusions
Acknowledgments
References
7---Smart-energy-systems-and-the-need-to-incorporate_2021_Low-Carbon-Energy-
7 - Smart energy systems and the need to incorporate homeostatically controlled microgrids to the electric power distri...
Chapter outline
1 - Smart energy systems, energy sustainability, and grid flexibility
The concept of smart energy systems, energy sustainab...
1.1 - Toward a new electric utilities’ perspective
1.2 - Homeostaticity of energy systems
How homeostaticity of energy systems works and why electric utilities need it
1.3 - Climate change and the current energy transition
Building the case for homeostaticity of sustainable hybrid energy sy...
1.4 - Electric power systems’ decentralization
The hurdles and roadblocks of electric power systems’ decentralization agend...
2 - Electric power distribution’s decentralization agenda
The electric utilities’ perspective regarding electric power dis...
2.1 - Microgrid trends
The shift in microgrid trends from an alternative energy generation solution to a more active power ...
2.2 - Homeostaticity in electric utility-operated microgrids
How to incorporate homeostaticity in electric utility-operated...
2.3 - Homeostaticity of SHES
Homeostasis-based power and energy management system for microgrids tied to the grid
3 - Homeostaticity in energy systems
The potential incentive of tariff differentiation, the frequency footprint concept, an...
3.1 - Exergy and energy efficiency
How to engineer sustainability and resiliency in sustainable hybrid energy systems (SHES)
3.2 - Role of the electric tariff differentiation
The role of the electric tariff differentiation factor and how it can be ...
4 - Energy homeostasis and homeostatic control strategies
Energy homeostasis and homeostatic control strategies developed t...
4.1 - Discussion
5 - Conclusions
Acknowledgments
References
8---Grid-tied-distributed-generation-with-energy-st_2021_Low-Carbon-Energy-T
8 - Grid-tied distributed generation with energy storage to advance renewables in the residential sector: tariffs analy...
Chapter outline
Nomenclature
1 - Introduction
1.1 - Sustainable energy systems
Redefining the role of energy efficiency (EF) and optimality in sustainable energy systems...
1.2 - The important, albeit not yet fully understood role of energy storage for electric utilities’ power distribution syst...
1.3 - Case study
A. Battery management
B. Active control of the energy demand
C. Payment management
2 - Deployment of distributed generation systems
Deployment of distributed generation systems for green energy integration ...
2.1 - Electricity tariffs
Tariff calculation and the assignation of tariffs to clustered customers
2.2 - Criteria A: Customers share the Nth part of generated renewable energy
2.3 - Criterion B: Substantial renewable energy supply according to customer merit
3 - Analysis on Chilean potential case scenario
How to deploy distributed generation systems for green energy integration i...
3.1 - Separate customers’ scenario
3.2 - Simulation results
4 - Conclusions
Acknowledgments
References
Further reading
9---Integrating-green-energy-into-the-grid--how-to-en_2021_Low-Carbon-Energy
9 - Integrating green energy into the grid: how to engineer energy homeostaticity, flexibility and resiliency in electr...
Chapter outline
1 - Introduction
2 - How to incorporate energy homeostaticity in electric power systems?
2.1 Thriftiness and resiliency in electric power systems
The concepts of thriftiness and resiliency in electric power syst...
3 - Control engineering design
3.1 - Why is energy efficiency (EF) not enough?
Lessons learned from technology initiatives, international applications, an...
3.2 - Energy prosumers
The concept and role of “prosumers” and the concept of the sustainable block: applications in resid...
3.3 - 50 kWh battery
3.4 - The case with 100 kWh battery
3.5 - The case with 150 kWh battery
4 - Conclusion
Acknowledgments
Websites
References
10---Multi-energy-systems-of_2021_Low-Carbon-Energy-Technologies-in-Sustaina
10 - Multi energy systems of the future
Chapter outline
1 - Introduction
2 - Multi energy supply chain
2.1 - Supply chain
2.2 - Transactive multi energy systems
3 - Multi forms of energy storage systems
3.1 - General
3.2 - Forms and key properties
3.2.1 - Sensible multi energy storage systems
3.2.2 - Latent multi energy storage systems
3.2.3 - Thermochemical multi energy storage systems
3.2.4 - Hybrid multi energy storage systems
4 - Assessment, economic issues, and perspectives
4.1 - Technological and economic issues
4.1.1 - Productivity and costs of multi energy systems
4.1.2 - The exogenous method
4.1.3 - The endogenous method
4.1.4 - Combined methodology
4.2 - Optimization and decision making
4.2.1 - Budget constraints, opportunity cost, and prioritization for resource allocation
4.2.2 - Multi criteria decision analysis (MCDA) assessment
4.2.3 - The mean variance models framework
4.2.4 - Linear programming
4.2.5 - Multi objective approaches
4.2.6 - Nonlinear programming and learning algorithms
5 - Conclusions
References
11---Bibliometric-analysis-of-scientific-pro_2021_Low-Carbon-Energy-Technolo
11 - Bibliometric analysis of scientific production on energy, sustainability, and climate change
Chapter outline
1 - Introduction
2 - Data and methodology
2.1 - Data
2.2 - Methodology
3 - Results
3.1 - Analysis of publications per year
3.2 - Subject area
3.3 - Document and source type
3.4 - Analysis of the major sources of publication and citation
3.5 - Analysis of countries
3.6 - Analysis of institutions
4 - Conclusions
References
12---Public-acceptance-of-renewa_2021_Low-Carbon-Energy-Technologies-in-Sust
12 - Public acceptance of renewable energy sources
Chapter outline
1 - Introduction
2 - Materials and methods
2.1 - Sample size and collection
2.2 - Survey questionnaire
2.3 - Data analysis
3 - Results and discussion
3.1 - Socio-demographic characteristics of the sample
4 - Descriptive analysis and the effect of socio-demographic characteristics
5 - Environmental sensitivity
6 - Opinions and knowledge about the RES
7 - Hypothetic RES installation scenario
8 - Conclusions
References
13---Sustainable-site-selection-of-offshore-wind-farm_2021_Low-Carbon-Energy
13 - Sustainable site selection of offshore wind farms using GIS-based multi-criteria decision analysis and analytical h...
Chapter outline
1 - Introduction to our work
2 - Introduction to the offshore wind energy sector
2.1 - Worldwide current status
2.2 - The situation in Europe
2.3 - The case of Greece
3 - Case study—the island of Crete
3.1 - Characteristics of the area
3.2 - The energy system
4 - Methodology
5 - Results and conclusions
References
14---Accounting-and-Sustai_2021_Low-Carbon-Energy-Technologies-in-Sustainabl
14 - Accounting and Sustainability
Chapter outline
1 - Introduction
2 - Sustainability and EU strategy
3 - Sustainability and the Accounting Profession
4 - Sustainable Finance and Circular Economy
5 - Conclusions
References
15---Should-low-carbon-energy-technologies-b_2021_Low-Carbon-Energy-Technolo
Chapter Should low carbon energy technologies be envisaged in the context of sustainable energy systems?
Chapter outline
1 - Introduction
2 - Methods
3 - Results
3.1 - Low carbon energy: the technological dimension
3.1.1 - Mining marketplace and power consumption
3.1.2 - Resource recovery technologies in reducing use of fossil fuels and fossil-based mineral fertilizers
3.1.3 - Renewable energy sources and energy crops
3.1.4 - Offshore wind farms using GIS-based multi-criteria decision analysis and analytical hierarchy process
3.2 - Sustainable energy systems: the social dimension
3.2.1 - Household sector
3.2.2 - Education
3.2.3 - Bibliometric analysis on energy, sustainability, and climate change
3.2.4 - Public acceptance of energy systems based on renewables
4 - Discussion and current research considerations
5 - Conclusions and future research orientations
5.1 - Challenges of carbon abatement based on energy systems
5.2 - Policies and implications
References
Index_2021_Low-Carbon-Energy-Technologies-in-Sustainable-Energy-Systems