Log-concavity, q-analogs and the Exponential Formula

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Ernesto Schirmacher
Series: PhD Thesis
Publisher: University of Minnesota
Year: 1997

Language: English

1 Introduction 1
2 Basic constructions and notation 8
2.1 Sets and set partitions .................................................................. 9
2.2 Partitions ........................................................................................ 10
2.3 The symmetric group ..................................................................... 15
2.4 Symmetric functions ..................................................................... 18
2.5 Unimodality and log-concavity ......................................................... 24
2.6 Polya frequency sequences ............................................................... 27
3 Rook Theory 31
3.1 Introduction ........................................................................................ 31
3.2 Rook numbers ..................................................................................... 33
3.3 The Foata-Schiitzenberger involution ............................................ 42
3.4 The factorial polynomials ............................................................... 45
3.5 Involution versus factorial polynomials ......................................... 49
3.6 A q-analog of the rook num bers ...................................................... 49
3.7 The involution preserves the statistic ............................................. 51
3.8 Strong log-concavity of g-rook numbers ......................................... 53
4 Log-concavity 58
4.1 Bender and Canfield’s main result ................................................... 58
4.2 Applications ........................................................................................ 60
4.3 Main Theorem .................................................................................. 62
4.4 Applications to polynomial sequences ............................................ 65
4.5 Proof of the Main T heorem ............................................................ 70
4.6 Iteration of the cycle index operator ............................................... 77
4.7 Parametrized log-concavity ............................................................... 82
4.8 Weighted Jacobi-Trudi m atrices ..................................................... 92
5 M ixed concavity and convexity 94
5.1 The log-Fibonacci property ........................................................... 94
5.2 Log-Fibonacci sequences .................................................................. 95
5.3 The strong log-Fibonacci property .................................................. 97
5.4 Strongly log-Fibonacci sequences .................................................. 99