Local Class Field Theory

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Kenkichi Iwasawa
Series: Oxford Mathematical Monographs
Publisher: Oxford University Press, USA
Year: 1986

Language: English
Pages: 163

Title Page......Page 1
Copyright Page......Page 3
Preface......Page 5
Contents......Page 7
1.1. Some Basic Definitions......Page 11
1.2. Complete Fields......Page 15
1.3. Finite Extensions of Complete Fields......Page 20
2.1. General Properties......Page 26
2.2. The Multiplicative Group k˟......Page 30
2.3. Finite Extensions......Page 33
2.4. The Different and the Discriminant......Page 37
2.5. Finite Galois Extensions......Page 40
3.1. Algebraic Extensions and Their Completions......Page 43
3.2. Unramified Extensions and Totally Ramified Extensions......Page 44
3.3. The Norm Groups......Page 48
3.4. Formal Power Series......Page 51
3.5. Power Series over o K̅......Page 53
4.1. Formal Groups in General......Page 58
4.2. Formal Groups F f (X, Y)......Page 61
4.3. The o-Modules W^n f......Page 65
4.4. Extensions L̅^n/K̅......Page 69
5.1. Abelian Extensions L^n and k^m,n π......Page 73
5.2. The Norm Operator of Coleman......Page 77
5.3. Abelian Extensions L and k π......Page 83
6.1. The Homomorphism ρ k......Page 88
6.2. Proof of L k = k ab......Page 92
6.3. The Norm Residue Map......Page 96
7.1. Norm Groups of Finite Abelian Extensions......Page 106
7.2. Ramification Groups in the Upper Numbering......Page 109
7.3. The Special Case k^m,n π/k......Page 115
7.4. Some Applications......Page 118
8.1. π-Sequences......Page 124
8.2. The Pairing (α, β) f......Page 128
8.3. The Pairing [α, β] ω......Page 131
8.4. The Main Theorem......Page 135
8.5. The Special Case for k = Q p......Page 141
A.1. Galois Cohomology Groups......Page 145
A.2. The Brauer Group of a Local Field......Page 149
A.3. The Method of Hazewinkel......Page 154
Bibliography......Page 159
Table of Notations......Page 161
Index......Page 163