Author(s): Greger R. Dahlin, Kalle E. Strom
Series: Electrical Engineering Developments
Publisher: Nova Science Pub Inc
Year: 2010
Language: English
Pages: 243
LITHIUM BATTERIES: RESEARCH, TECHNOLOGY AND APPLICATIONS......Page 2
LITHIUM BATTERIES: RESEARCH, TECHNOLOGY AND APPLICATIONS......Page 4
CONTENTS......Page 6
PREFACE......Page 8
1. INTRODUCTION......Page 14
2.1. Solid-State Reaction......Page 16
2.2. Hydrothermal Method......Page 17
2.3. Co-Precipitation......Page 18
2.4. Emulsion-Drying Method......Page 19
2.5. Sol-Gel Method......Page 21
2.7. Microwave Processing......Page 22
2.8. Other Synthesis Methods......Page 23
3.1. Effect of Particle Size and Morphology on Electrochemical Performance of LiFePO4......Page 25
3.2. Substitution of Li+ or Fe2+ with Cations......Page 27
3.3. Effect of Carbon Coating and Metal or Metal Oxide Mixing on Charge/Discharge Performance of LiFePO4......Page 30
5. ACKNOWLEDGMENTS......Page 36
REFERENCES......Page 37
1. INTRODUCTION......Page 44
2.1 Introduction......Page 47
2.2.2 Synthesis of stoichiometric LiNiO2-based materials......Page 48
2.2.3 Structural stability of delithiated LiNiO2-based materials......Page 50
2.2.4 Thermal stability of delithiated LiNiO2-based materials......Page 53
2.3.2 Development of monoclinic LiMnO2 cathode materials......Page 57
2.3.3 Development of orthorhombic LiMnO2 cathode materials......Page 60
2.4 Mixed Transition Metal Dioxides......Page 62
3.1 Introduction......Page 65
3.2.1 Problems with LiMn2O4......Page 66
3.2.2 Modification of LiMn2O4......Page 69
4.1 Introduction......Page 72
4.2.1 Problems with LiFePO4......Page 73
4.2.2 Synthesis methods for LiFePO4......Page 74
4.2.3 Electrochemical performance upgrading of LiFePO4......Page 75
4.3 LiMPO4 (M = Mn, Co, Ni)......Page 76
5 CONCLUSION......Page 77
REFERENCES......Page 78
ABSTRACT......Page 86
I. INTRODUCTION......Page 87
II. OVERVIEW OF HIGH POWER CELL DESIGN......Page 88
1. Overview of the Approach......Page 91
2. Model Case: Analysis on Hypothetical Electrode in LIB......Page 92
1. Cell Configuration and Electrochemical Test Procedures......Page 98
2. Analysis Based on a Two-Electrode Electrochemical Cell and its Limitation......Page 101
3. Analysis Based on a Three-Electrode Electrochemical Cell......Page 105
2. Effect of Temperature on Total and Elementary Polarizations......Page 116
3. Power Performance of Hybrid Electrodes......Page 121
VI. CONCLUSION......Page 128
REFERENCES......Page 129
ABSTRACT......Page 132
INTRODUCTION......Page 133
COMPARISON OF AVAILABLE TECHNOLOGIES......Page 134
HISTORICAL REVIEW......Page 137
Electronic Stability......Page 138
Structural Stability......Page 143
Aromatic Redox Shuttles......Page 148
Non-Aromatic Redox Shuttles......Page 154
CONCLUSION......Page 156
REFERENCES......Page 157
ABSTRACT......Page 160
2. MEASUREMENT OF THERMAL STABILITY......Page 161
2.2. Accelerating Rate Calorimetry......Page 162
3.1. Temperature Coefficient of Cell Voltage......Page 163
3.2. Cell Design......Page 164
3.3. Electrolyte......Page 165
4. LICOO2......Page 166
4.1. Coated LiCoO2 Cathodes......Page 167
5. LICO0.2NI0.8O2......Page 170
5.1. Substituted LiNiyCo1-yO2 Compositions......Page 171
6. CONCLUSIONS......Page 172
REFERENCES......Page 174
COMPOSITIONAL AND STRUCTURAL EVOLUTION OF CATHODE PARTICLES OF THE CYCLED LITHIUM BATTERIES INVESTIGATED BY ANALYTICAL HIGH RESOLUTION TRANSMISSION ELECTRON MICROSCOPY(AHRTEM)......Page 178
1.1 The Cathode of Lithium Battery is the Li+ Source and Sinks......Page 179
1.2 The Compositional and Structural Feature of Surface of a Cathode Particle......Page 181
1.3 Fundamental Structural and Compositional Relationships between the NaFeO2 and LiMO2 (M=Co,Ni,Mn)......Page 182
1.4 Analytical High Resolution Transmission Electron Microscopy (AHRTEM) is a Powerful Tool for Revealing Composition and Structure Variation of the Cathode Particles of a Cycled Lithium Battery at Atomic Scale......Page 184
2.1 Preparation of the Cycled Cathode Particles for AHRTEM......Page 185
3.1 LiCoO2......Page 189
3.3 LiNi0.8Co0.2O2......Page 191
REFERENCES......Page 192
ABSTRACT......Page 194
Introduction......Page 195
Experimental Section......Page 197
Results and Discussion......Page 198
The XRD and the Structure of LiV3O8......Page 199
CONCLUSION......Page 203
Introduction......Page 204
Experimental Section......Page 206
Results and Discussion......Page 207
REFERENCE......Page 214
ABSTRACT......Page 216
2. STATUS OF ADVANCED BATTERY DEVELOPMENT......Page 217
3.1 Approach......Page 219
3.2 Experimental Data......Page 220
3.3 Battery Design Modeling......Page 221
3.4 Impedance Modeling......Page 223
4.1 Approach......Page 225
4.2 Vehicle Characteristics......Page 226
4.3 Component Sizing Algorithm......Page 227
4.4 Control Strategy Philosophy......Page 229
4.5 Fuel Economy Results......Page 230
5. CONCLUSIONS......Page 232
REFERENCES......Page 233
INDEX......Page 236