Author(s): Christian Glaize, Sylvie Genies
Series: Electrical Engineering Series
Publisher: Wiley-ISTE
Year: 2013
Language: English
Pages: 374
City: London
Tags: Химия и химическая промышленность;Электрохимия;Химические источники тока;
Cover
......Page 1
Title Page
......Page 5
Contents
......Page 7
Preface
......Page 15
Acknowledgements
......Page 17
Introduction
......Page 19
Part 1. Storage Requirements Characteristics Of Secondary Batteries Examples Of Use......Page 21
1.2. Domains of application for energy storage......Page 23
1.2.1. Starter batteries......Page 24
1.2.2. Traction batteries......Page 26
1.2.3. Stationary batteries......Page 30
1.2.4. Batteries for mobile or nomadic devices......Page 37
1.3. Review of storage requirements and appropriate technologies......Page 38
1.4. Conclusion......Page 39
2.2. Terminology......Page 41
2.2.2. Element, elementary cell, electrolyte......Page 42
2.2.3. Electrode, half-element, half-cell......Page 43
2.2.4. Oxidation, reduction, anode, cathode......Page 44
2.2.6. Voltage......Page 45
2.2.7. Battery of accumulators, modules, packs, BMS......Page 46
2.3.2. Voltage under current......Page 47
2.3.3. Capacities......Page 50
2.4.1. Depth of discharge......Page 60
2.4.4. State of health......Page 61
2.4.6. Theoretical gravimetric capacity......Page 65
2.4.9. Specific capacity......Page 66
2.4.10. Direct-current internal resistance and short-circuit current......Page 67
2.4.11. AC internal resistance......Page 68
2.4.12. Impedance, impedancemetry, impedance spectroscopy......Page 69
2.4.13. Stored energy and deliverable energy......Page 82
2.4.14. Gravimetric energy density......Page 83
2.4.16. Specific energy......Page 84
2.4.17. Gravimetric power and volumetric power......Page 85
2.5. Faradaic efficiency......Page 86
2.6. Self-discharge......Page 87
2.7. Acceptance current......Page 88
2.9.1. Redox potential of an electrode......Page 89
2.9.2. Electromotive force of an electrochemical cell......Page 90
2.9.3. Nernst’s law......Page 91
2.9.4. Activity of the species......Page 93
2.9.5. Example of the application of Nernst’s law to a lithium secondary battery using the insertion mechanism......Page 94
2.10. Appendix 2: Double layer......Page 98
2.11. Appendix 3: Warburg impedance......Page 99
2.12. Solutions to the exercises in Chapter 2......Page 102
3.1.1. Starter currents for internal combustion engines in cars......Page 109
3.1.2. Power required by a telecommunications transceiver in an isolated site......Page 114
3.1.3. House in an isolated site......Page 118
3.1.4. Currents in an operational electric car battery......Page 121
3.1.5. Currents during the phase of recharging of batteries in electric cars......Page 124
3.1.6. Autonomous urban lighting......Page 127
3.2. Conclusion......Page 129
3.3. Solution to the exercises in Chapter 3......Page 130
Part 2. Lithium Batteries......Page 135
4.1. History of lithium batteries......Page 137
4.2. Categories of lithium batteries......Page 141
4.3.1. Intercalation (or insertion) materials......Page 142
4.3.2. Alloys......Page 143
4.3.3. Direction conversion materials......Page 148
4.3.4. Differences of voltage profiles between intercalation materials, alloys and conversion materials......Page 149
4.3.5. Properties of the electrode materials......Page 150
4.4.2. Appendix 2: Dendrites......Page 151
4.4.3. Appendix 3: Transition metals......Page 152
5.1. Introduction......Page 155
5.2. Operation of lithium-ion technology......Page 156
5.3.1. Lithiated transition metal oxides......Page 158
5.3.2. Manganese oxide......Page 162
5.3.3. Lithiated iron oxyphosphate......Page 163
5.3.4. Crystalline structures......Page 165
5.4.1. Carbonaceous materials......Page 166
5.4.2. Other carbonaceous materials......Page 170
5.4.3. Lithium titanate oxide......Page 172
5.4.5. Mass capacities......Page 176
5.5.1. Liquid electrolyte......Page 178
5.5.2. Polymer electrolyte......Page 180
5.6. Current collectors......Page 181
5.8. Solution to exercises in Chapter......Page 182
6.1. Principle of operation of conventional assemblies of electrodes......Page 187
6.1.2. Principle of operation of a C-LiCoO2 element......Page 188
6.1.3. Principle of operation of a C-LiFePO4 element......Page 191
6.1.4. Principle of operation of a Li4Ti5O12-LiMn2O4 element......Page 193
6.1.5. Principle of operation of a Li4Ti5O12-LiFePO4 element......Page 196
6.2. Major characteristics......Page 197
6.2.1. Voltage of an element......Page 198
6.2.2. Usage for “energy” or “power”......Page 199
6.2.3. Window of voltage explored......Page 201
6.2.4. Charge......Page 203
6.2.5. Safety management in cells......Page 207
6.2.6. Internal failures......Page 208
6.2.8. Self-discharge......Page 209
6.2.11. Dependency of the capacity on the discharge current and the temperature. Peukert’s law......Page 210
6.2.12. Gauges......Page 212
6.2.13. Practical gravimetric energy density......Page 218
6.2.14. Practical volumetric energy density......Page 222
6.2.15. Plot of the gravimetric energy densities as a function of the volumetric energy densities......Page 223
6.2.16. Gravimetric and volumetric power densities......Page 224
6.2.17. Faradaic efficiency of a charge/discharge cycle......Page 226
6.2.18. Energy efficiency of a charge/discharge cycle......Page 227
6.2.20. Calendar lifetime......Page 230
6.2.21. Degradation phenomena......Page 234
6.2.22. Operational safety......Page 237
6.2.23. Transport and storage of lithium batteries......Page 239
6.2.24. Packaging......Page 241
6.2.25. Manufacturing procedures......Page 242
6.2.26. Energy cost throughout lifecycle......Page 246
6.2.28. Manufacturers and suppliers/integrators......Page 248
6.2.29. Main outlets......Page 249
6.3. Solution to exercises from Chapter 6......Page 250
Chapter 7. Present and Future Developments Regarding Lithium-ion Batteries......Page 255
7.1.1. Developments of advanced BMSs (Battery Management Systems)......Page 256
7.1.2. Development of high-performance management systems......Page 258
7.1.3. Synthesis of new solvents......Page 259
7.1.4. Introduction of redox shuttle molecules to prevent over-charging......Page 260
7.2.1. Synthesis of new materials......Page 264
7.3.1. Development of specific architectures: bipolar......Page 272
7.3.2. Development of thin and soft batteries......Page 273
7.3.3. Development of micro-batteries......Page 274
7.4. Conclusion......Page 275
Chapter 8. Lithium-Metal Polymer Batteries......Page 277
8.1. Principle of operation......Page 278
8.1.1. Positive electrode......Page 279
8.2. Manufacturing process......Page 280
8.3.3. Practical gravimetric energy density......Page 281
8.3.9. Recyclability......Page 282
9.1. Introduction......Page 283
9.3. Principle of operation......Page 284
9.4. Discharge curve......Page 289
9.5. Advantages to Li-S......Page 290
9.6.1. Positive electrode......Page 291
9.6.2. Electrolyte......Page 298
9.6.3. Negative electrode......Page 303
9.7. Conclusion......Page 305
10.1. Introduction......Page 307
10.2. Operational principle......Page 309
10.2.1. Aqueous Li-O2
......Page 310
10.2.2. Organic Li-O2......Page 312
10.3. Electrolytes......Page 315
10.4. Main limitations......Page 317
10.4.1. General limitations......Page 318
10.5. Main actors......Page 324
10.6. Conclusion......Page 326
10.7. Appendix: calculation of theoretical gravimetric energy densities......Page 327
Chapter 11. Lithium Resources......Page 329
11.1. State of the art in terms of availability of lithium resources......Page 330
11.2. Comparison of resources with the needs of the electrical industry......Page 332
11.3. State of the art of extraction techniques and known production reserves......Page 335
11.4. Nature and geological origin of all potential lithium resources......Page 338
11.5. Global geographic distribution of raw lithium resources......Page 340
11.6. Evolution of the cost of lithium.......Page 343
11.7. Summary......Page 345
Part 3. Other Types Of Batteries......Page 347
12.1. Introduction......Page 349
12.2.1. Operational principle......Page 350
12.2.2. Main characteristics......Page 353
12.3. Nickel chloride batteries......Page 355
12.3.1. Operational principle......Page 356
12.3.2. Main characteristics......Page 358
12.3.3. Availability......Page 359
12.5. Redox flow systems......Page 360
12.5.2. Operational principle......Page 363
12.5.3. Main characteristics......Page 365
12.5.4. Availability......Page 367
12.5.5. Other redox flow battery technologies......Page 369
12.5.6. Conclusion about redox flow batteries......Page 370
Conclusion......Page 371
Index......Page 373