Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (Wiley Series in Materials for Electronic & Optoelectronic Applications)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Liquid-Phase Epitaxy (LPE) is a technique used in the bulk growth of crystals, typically in semiconductor manufacturing, whereby the crystal is grown from a rich solution of the semiconductor onto a substrate in layers, each of which is formed by supersaturation or cooling. At least 50% of growth in the optoelectronics area is currently focussed on LPE.This book covers the bulk growth of semiconductors, i.e. silicon, gallium arsenide, cadmium mercury telluride, indium phosphide, indium antimonide, gallium nitride, cadmium zinc telluride, a range of wide-bandgap II-VI compounds, diamond and silicon carbide, and a wide range of oxides/fluorides (including sapphire and quartz) that are used in many industrial applications. A separate chapter is devoted to the fascinating field of growth in various forms of microgravity, an activity that is approximately 30-years old and which has revealed many interesting features, some of which have been very surprising to experimenters and theoreticians alike.Covers the most important materials within the fieldThe contributors come from a wide variety of countries and include both academics and industrialists, to give a balanced treatmentBuilds-on an established series known in the communityHighly pertinent to current and future developments in telecommunications and computer-processing industries.

Author(s): Peter Capper, Michael Mauk
Edition: 1
Year: 2007

Language: English
Pages: 464

Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials......Page 4
Contents......Page 8
Series Preface......Page 14
Preface......Page 16
Acknowledgements......Page 22
List of Contributors......Page 24
1.1 General aspects of liquid phase epitaxy......Page 26
1.2 Epitaxial growth modes, growth mechanisms and layer thicknesses......Page 28
1.3 The substrate problem......Page 40
1.4 Conclusions......Page 41
References......Page 42
2.1 Introduction......Page 46
2.2.1 LPE growth from a capillary......Page 48
2.2.2 Low-temperature LPE......Page 50
2.2.3 LPE growth of InGaAsP quantum well heterostructures......Page 54
2.3 Rare-earth elements in LPE technology of some III-V binary compounds and solid solutions......Page 60
Acknowledgements......Page 62
References......Page 63
3.1 Introduction......Page 70
3.2.1 Binary, ternary and quaternary phase diagrams......Page 71
3.2.2 Calculation of binary, ternary and quaternary phase diagrams......Page 74
3.2.3 Calculation of phase diagrams considering the surface, interface and strain energies......Page 79
3.2.4 Experimental determination of phase diagrams......Page 84
3.2.5 Miscibility gap......Page 89
3.3 Technologies of LPE growth......Page 91
3.4 III-V materials for LPE growth......Page 93
3.5 Lattice matching......Page 94
3.6 Growth of misfit-dislocation-free wafers......Page 96
3.7 Phase diagrams of growth mode......Page 98
3.8.1 Calculation of III-V layer thickness......Page 102
3.8.2 Compositional variation in III-V ternary layers......Page 103
References......Page 104
Appendix......Page 107
4.1 Introduction......Page 110
4.2 Overview, general description and operation of horizontal slideboat LPE system......Page 114
4.3 Crucibles and slideboats......Page 116
4.4 Alternative slideboat designs......Page 117
4.5 Furnaces and heating......Page 121
4.6 LPE ambient......Page 123
4.8 Controllers and heating......Page 124
4.9 Temperature measurements and other instrumentation......Page 125
4.11 Production LPE systems......Page 126
References......Page 130
5 Silicon, Germanium and Silicon-Germanium Liquid Phase Epitaxy......Page 134
5.1 Introduction and scope of review......Page 135
5.2 Historical perspective......Page 136
5.3 Basis of silicon and germanium LPE......Page 140
5.3.1 Nucleation of silicon from a molten metal solution......Page 144
5.4 Silicon LPE methods......Page 149
5.4.1 Steady-state methods of solution growth and LPE......Page 150
5.5 Solvent selection......Page 160
5.6 Low-temperature silicon LPE......Page 162
5.7 Purification of silicon for solar cells in an LPE process......Page 163
5.8 Electrical properties of LPE-grown silicon......Page 165
5.9 LPE of Si- and Ge-based alloys......Page 166
5.10 Selective LPE and liquid phase ELO......Page 167
5.11 Solar cells......Page 169
5.11.1 Epitaxial silicon solar cells by LPE......Page 170
5.11.2 Si solution growth on nonsilicon substrates for solar cells......Page 174
5.12 Other applications of silicon and germanium LPE......Page 175
References......Page 176
Appendix 1. Phase equilibria modeling: The silicon-metal liquidus......Page 191
A1.2 Alloy solvents......Page 193
Appendix 2. Impurities and doping in silicon LPE......Page 196
Appendix 3. Effects of oxygen and water vapor in Si LPE......Page 200
A3.1 Thermodynamics of silicon oxidation......Page 201
A3.2 Silicon passivity and melt reducing agents......Page 203
6.1 Introduction......Page 204
6.2 Fundamental aspects of LPE of SiC......Page 205
6.3 Growth methods for SiC LPE......Page 210
6.3.1 Modified travelling solvent method......Page 211
6.3.3 Container free LPE......Page 216
6.3.4 Vapour–liquid–solid mechanism......Page 217
6.4.1 Step-bunching......Page 218
6.4.2 Micropipe filling......Page 220
6.5 LPE of SiC under reduced gravity......Page 221
6.6 Applications......Page 223
References......Page 224
7.1 Introduction......Page 228
7.2 Control of epitaxial growth modes......Page 232
7.3 Thermodynamics and phase diagrams......Page 234
7.4.1 Solvents......Page 236
7.4.2 Crucibles......Page 238
7.4.3 Growth atmosphere......Page 239
7.4.4 Substrates......Page 240
7.5 LPE results, characterization of LPE(solution)-grown GaN......Page 243
7.7 Conclusions and outlook......Page 246
References......Page 247
8.1 Introduction......Page 252
8.2 LPE growth of quantum wells......Page 253
8.3 Thickness of rapid slider LPE layers......Page 256
8.4 Interface abruptness......Page 260
8.5 Compositional homogeneity......Page 261
8.6 Devices incorporating ultrathin LPE layers......Page 262
8.7 LPE growth of InAs quantum wells......Page 264
8.7.1 PL characterisation......Page 266
8.8 LPE growth of quantum dots for mid-infrared optoelectronic devices......Page 268
8.8.1 InSb QDs on GaAs (100) substrates......Page 269
8.8.2 Investigation of InAsSb QDs......Page 272
8.9 Mid-infrared luminescence of encapsulated InAsSb QDs......Page 274
8.10 Electroluminescence of InAsSb QD LEDs......Page 276
Acknowledgements......Page 278
References......Page 279
9.1 Introduction......Page 284
9.2.1 Introduction......Page 286
9.2.2 Phase diagram and defect chemistry......Page 287
9.2.3 LPE growth techniques......Page 289
9.3 Material characteristics......Page 294
9.3.1 Composition and thickness......Page 296
9.3.2 Crystal quality and surface morphology......Page 297
9.3.3 Impurity doping and electrical properties......Page 298
9.4 Device status......Page 303
9.5 Summary and future developments......Page 308
References......Page 309
10.2 Basic properties......Page 314
10.3 LPE technique......Page 316
10.4 Review of some experimental results......Page 317
10.4.1 Growth from Zn, Zn-Ga and halide solvents......Page 318
10.4.2 Growth from Te and Se solvents......Page 321
10.4.3 Growth from Sn solvent......Page 324
10.4.4 Growth from Bi solvent......Page 326
References......Page 327
11.1 Introduction......Page 330
11.2 LPE growth......Page 334
11.3.1 Phase diagram......Page 336
11.3.2 Chemical thermodynamics of LPE......Page 339
11.4.1 Mass transport and growth rate......Page 342
11.4.2 Control of morphology......Page 346
11.5 Bi-substituted garnet films......Page 348
11.6.1 Misfit strain......Page 350
11.6.3 Optical absorption......Page 353
11.6.4 Magnetic anisotropy......Page 358
11.7 Applications of garnet films......Page 359
References......Page 362
12 Liquid Phase Epitaxy: A Survey of Capabilities, Recent Developments and Specialized Applications......Page 366
12.1 Introduction......Page 367
12.2 Comparison of epitaxy techniques and some advantages of LPE......Page 368
12.4 Modeling of LPE processes......Page 380
12.5 Survey of new developments and specialized applications of LPE......Page 381
12.5.1 Five- and six-component III-V semiconductor alloys by LPE......Page 382
12.5.3 Quantum wells, superlattices and nanostructures by LPE......Page 383
12.5.4 Growth of thick ternary and quaternary alloy layers for ‘virtual’ substrates with adjustable lattice parameters......Page 385
12.5.5 Selective epitaxy and ELO......Page 388
12.5.7 Rare earth doping and other doping effects in LPE......Page 391
12.5.8 Fundamental studies of crystal growth, melt convection and liquid-metal transport properties......Page 392
12.5.9 Novel melt compositions for LPE......Page 394
12.5.10 Liquid phase electroepitaxy......Page 395
12.5.11 LPE of thallium-, manganese-, and bismuth-containing III-V alloys......Page 398
12.5.12 Control of segregation in LPE-grown alloys......Page 399
12.5.13 LPE heteroepitaxy......Page 401
12.5.14 SiC and III-V nitride LPE......Page 406
12.5.15 Some other materials grown by LPE or solution growth......Page 408
12.5.16 LPE for shaped crystal growth......Page 414
12.6 Conclusions and outlook......Page 416
References......Page 417
13.1 Introduction......Page 440
13.2 Commercial LEDs......Page 444
13.3.1 Silicon carbide LEDs......Page 445
13.3.2 Wide-bandgap II-VI compound LEDs......Page 446
13.4 LPE for mid-infrared LEDs......Page 447
13.5 LPE for new LED design concepts......Page 449
13.6 Outlook......Page 451
References......Page 455
Index......Page 460