Linear systems and signals

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): B. P Lathi
Edition: 3rd Edition
Publisher: Oxford University Press
Year: 2017

Language: English
Pages: 1010
Tags: Signals Systems Textbook

Cover......Page 1
Half title......Page 3
Series page......Page 4
Title page......Page 5
Copyright page......Page 6
CONTENTS......Page 7
PREFACE......Page 17
B.1-1 A Historical Note......Page 21
B.1-2 Algebra of Complex Numbers......Page 25
B.2 SINUSOIDS......Page 36
B.2-1 Addition of Sinusoids......Page 38
B.3-1 Monotonic Exponentials......Page 40
B.3-2 The Exponentially Varying Sinusoid......Page 42
B.4 CRAMER’S RULE......Page 43
B.5 PARTIAL FRACTION EXPANSION......Page 45
B.5-1 Method of Clearing Fractions......Page 46
B.5-2 The Heaviside “Cover-Up” Method......Page 47
B.5-3 Repeated Factors of Q(x)......Page 51
B.5-4 A Combination of Heaviside “Cover-Up” and Clearing Fractions......Page 52
B.5-5 Improper F(x) with m = n......Page 54
B.5-6 Modified Partial Fractions......Page 55
B.6 VECTORS AND MATRICES......Page 56
B.6-1 Some Definitions and Properties......Page 57
B.6-2 Matrix Algebra......Page 58
B.7-1 MATLAB Overview......Page 62
B.7-2 Calculator Operations......Page 63
B.7-3 Vector Operations......Page 65
B.7-4 Simple Plotting......Page 66
B.7-5 Element-by-Element Operations......Page 68
B.7-6 Matrix Operations......Page 69
B.7-7 Partial Fraction Expansions......Page 73
B.8-3 Sums......Page 74
B.8-6 Trigonometric Identities......Page 75
B.8-7 Common Derivative Formulas......Page 76
B.8-8 Indefinite Integrals......Page 77
REFERENCES......Page 78
PROBLEMS......Page 79
1.1 SIZE OF A SIGNAL......Page 84
1.1-2 Signal Power......Page 85
1.2-1 Time Shifting......Page 91
1.2-2 Time Scaling......Page 93
1.2-3 Time Reversal......Page 96
1.2-4 Combined Operations......Page 97
1.3-2 Analog and Digital Signals......Page 98
1.3-3 Periodic and Aperiodic Signals......Page 99
1.4 SOME USEFUL SIGNAL MODELS......Page 102
1.4-1 The Unit Step Function u(t)......Page 103
1.4-2 The Unit Impulse Function δ(t)......Page 106
1.4-3 The Exponential Function e^{st}......Page 109
1.5-1 Some Properties of Even and Odd Functions......Page 112
1.5-2 Even and Odd Components of a Signal......Page 113
1.6 SYSTEMS......Page 115
1.7-1 Linear and Nonlinear Systems......Page 117
1.7-2 Time-Invariant and Time-Varying Systems......Page 122
1.7-3 Instantaneous and Dynamic Systems......Page 123
1.7-4 Causal and Noncausal Systems......Page 124
1.7-5 Continuous-Time and Discrete-Time Systems......Page 127
1.7-7 Invertible and Noninvertible Systems......Page 129
1.7-8 Stable and Unstable Systems......Page 130
1.8-1 Electrical Systems......Page 131
1.8-2 Mechanical Systems......Page 134
1.8-3 Electromechanical Systems......Page 138
1.9 INTERNAL AND EXTERNAL DESCRIPTIONS OF A SYSTEM......Page 139
1.10 INTERNAL DESCRIPTION: THE STATE-SPACE DESCRIPTION......Page 141
1.11-1 Anonymous Functions......Page 146
1.11-2 Relational Operators and the Unit Step Function......Page 148
1.11-3 Visualizing Operations on the Independent Variable......Page 150
1.11-4 Numerical Integration and Estimating Signal Energy......Page 151
1.12 SUMMARY......Page 153
REFERENCES......Page 155
PROBLEMS......Page 156
2.1 INTRODUCTION......Page 170
2.2 SYSTEM RESPONSE TO INTERNAL CONDITIONS: THE ZERO-INPUT RESPONSE......Page 171
2.2-1 Some Insights into the Zero-Input Behavior of a System......Page 181
2.3 THE UNIT IMPULSE RESPONSE h(t)......Page 183
2.4 SYSTEM RESPONSE TO EXTERNAL INPUT: THE ZERO-STATE RESPONSE......Page 188
2.4-1 The Convolution Integral......Page 190
2.4-2 Graphical Understanding of Convolution Operation......Page 198
2.4-3 Interconnected Systems......Page 210
2.4-4 A Very Special Function for LTIC Systems: The Everlasting Exponential e^{st}......Page 213
2.4-5 Total Response......Page 215
2.5-1 External (BIBO) Stability......Page 216
2.5-2 Internal (Asymptotic) Stability......Page 218
2.5-3 Relationship Between BIBO and Asymptotic Stability......Page 219
2.6-1 Dependence of System Behavior on Characteristic Modes......Page 223
2.6-2 Response Time of a System: The System Time Constant......Page 225
2.6-3 Time Constant and Rise Time of a System......Page 226
2.6-4 Time Constant and Filtering......Page 227
2.6-6 Time Constant and Rate of Information Transmission......Page 229
2.6-7 The Resonance Phenomenon......Page 230
2.7 MATLAB: M-FILES......Page 232
2.7-1 Script M-Files......Page 233
2.7-2 Function M-Files......Page 234
2.7-3 For-Loops......Page 235
2.7-4 Graphical Understanding of Convolution......Page 237
2.8 APPENDIX: DETERMINING THE IMPULSE RESPONSE......Page 240
2.9 SUMMARY......Page 241
PROBLEMS......Page 243
3.1 INTRODUCTION......Page 257
3.1-1 Size of a Discrete-Time Signal......Page 258
3.2 USEFUL SIGNAL OPERATIONS......Page 260
3.3-1 Discrete-Time Impulse Function δ[n]......Page 265
3.3-2 Discrete-Time Unit Step Function u[n]......Page 266
3.3-3 Discrete-Time Exponential γ^n......Page 267
3.3-4 Discrete-Time Sinusoid cos(Omega n+θ)......Page 271
3.3-5 Discrete-Time Complex Exponential e^{jOmega n}......Page 272
3.4 EXAMPLES OF DISCRETE-TIME SYSTEMS......Page 273
3.4-1 Classification of Discrete-Time Systems......Page 282
3.5 DISCRETE-TIME SYSTEM EQUATIONS......Page 285
3.5-1 Recursive (Iterative) Solution of Difference Equation......Page 286
3.6 SYSTEM RESPONSE TO INTERNAL CONDITIONS: THE ZERO-INPUT RESPONSE......Page 290
3.7 THE UNIT IMPULSE RESPONSE h[n]......Page 297
3.7-1 The Closed-Form Solution of h[n]......Page 298
3.8 SYSTEM RESPONSE TO EXTERNAL INPUT: THE ZERO-STATE RESPONSE......Page 300
3.8-1 Graphical Procedure for the Convolution Sum......Page 308
3.8-2 Interconnected Systems......Page 314
3.8-3 Total Response......Page 317
3.9-1 External (BIBO) Stability......Page 318
3.9-2 Internal (Asymptotic) Stability......Page 319
3.9-3 Relationship Between BIBO and Asymptotic Stability......Page 321
3.10 INTUITIVE INSIGHTS INTO SYSTEM BEHAVIOR......Page 325
3.11-1 Discrete-Time Functions and Stem Plots......Page 326
3.11-2 System Responses Through Filtering......Page 328
3.11-3 A Custom Filter Function......Page 330
3.11-4 Discrete-Time Convolution......Page 331
3.13 SUMMARY......Page 333
PROBLEMS......Page 334
4.1 THE LAPLACE TRANSFORM......Page 350
4.1-1 Finding the Inverse Transform......Page 358
4.2-1 Time Shifting......Page 369
4.2-2 Frequency Shifting......Page 373
4.2-3 The Time-Differentiation Property......Page 374
4.2-4 The Time-Integration Property......Page 376
4.2-6 Time Convolution and Frequency Convolution......Page 377
4.3 SOLUTION OF DIFFERENTIAL AND INTEGRO-DIFFERENTIAL EQUATIONS......Page 380
4.3-1 Comments on Initial Conditions at 0^− and at 0^+......Page 383
4.3-2 Zero-State Response......Page 386
4.3-3 Stability......Page 391
4.4 ANALYSIS OF ELECTRICAL NETWORKS: THE TRANSFORMED NETWORK......Page 393
4.4-1 Analysis of Active Circuits......Page 402
4.5 BLOCK DIAGRAMS......Page 406
4.6 SYSTEM REALIZATION......Page 408
4.6-1 Direct Form I Realization......Page 409
4.6-2 Direct Form II Realization......Page 410
4.6-3 Cascade and Parallel Realizations......Page 413
4.6-4 Transposed Realization......Page 416
4.6-5 Using Operational Amplifiers for System Realization......Page 419
4.7 APPLICATION TO FEEDBACK AND CONTROLS......Page 424
4.7-1 Analysis of a Simple Control System......Page 426
4.8 FREQUENCY RESPONSE OF AN LTIC SYSTEM......Page 432
4.8-1 Steady-State Response to Causal Sinusoidal Inputs......Page 438
4.9 BODE PLOTS......Page 439
4.9-2 Pole (or Zero) at the Origin......Page 442
4.9-3 First-Order Pole (or Zero)......Page 444
4.9-4 Second-Order Pole (or Zero)......Page 446
4.9-5 The Transfer Function from the Frequency Response......Page 455
4.10-1 Dependence of Frequency Response on Poles and Zeros of H(s)......Page 456
4.10-2 Lowpass Filters......Page 459
4.10-4 Notch (Bandstop) Filters......Page 461
4.10-5 Practical Filters and Their Specifications......Page 464
4.11 THE BILATERAL LAPLACE TRANSFORM......Page 465
4.11-1 Properties of the Bilateral Laplace Transform......Page 471
4.11-2 Using the Bilateral Transform for Linear System Analysis......Page 472
4.12 MATLAB: CONTINUOUS-TIME FILTERS......Page 475
4.12-1 Frequency Response and Polynomial Evaluation......Page 476
4.12-2 Butterworth Filters and the Find Command......Page 479
4.12-3 Using Cascaded Second-Order Sections for Butterworth Filter Realization......Page 481
4.12-4 Chebyshev Filters......Page 483
4.13 SUMMARY......Page 486
PROBLEMS......Page 488
5.1 THE z-TRANSFORM......Page 508
5.1-1 Inverse Transform by Partial Fraction Expansion and Tables......Page 515
5.1-2 Inverse z-Transform by Power Series Expansion......Page 519
5.2-1 Time-Shifting Properties......Page 521
5.2-2 z-Domain Scaling Property (Multiplication by γ^n)......Page 525
5.2-4 Time-Reversal Property......Page 526
5.2-5 Convolution Property......Page 527
5.3 z-TRANSFORM SOLUTION OF LINEAR DIFFERENCE EQUATIONS......Page 530
5.3-1 Zero-State Response of LTID Systems: The Transfer Function......Page 534
5.3-2 Stability......Page 538
5.4 SYSTEM REALIZATION......Page 539
5.5 FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS......Page 546
5.5-1 The Periodic Nature of Frequency Response......Page 552
5.5-2 Aliasing and Sampling Rate......Page 556
5.6 FREQUENCY RESPONSE FROM POLE-ZERO LOCATIONS......Page 558
5.7 DIGITAL PROCESSING OF ANALOG SIGNALS......Page 567
5.8 THE BILATERAL z-TRANSFORM......Page 574
5.8-1 Properties of the Bilateral z-Transform......Page 579
5.8-2 Using the Bilateral z-Transform for Analysis of LTID Systems......Page 580
5.9 CONNECTING THE LAPLACE AND z-TRANSFORMS......Page 583
5.10 MATLAB: DISCRETE-TIME IIR FILTERS......Page 585
5.10-1 Frequency Response and Pole-Zero Plots......Page 586
5.10-2 Transformation Basics......Page 587
5.10-3 Transformation by First-Order Backward Difference......Page 588
5.10-4 Bilinear Transformation......Page 589
5.10-5 Bilinear Transformation with Prewarping......Page 590
5.10-6 Example: Butterworth Filter Transformation......Page 591
5.10-8 Using Cascaded Second-Order Sections to Improve Design......Page 592
5.11 SUMMARY......Page 594
PROBLEMS......Page 595
6.1 PERIODIC SIGNAL REPRESENTATION BY TRIGONOMETRIC FOURIER SERIES......Page 613
6.1-1 The Fourier Spectrum......Page 618
6.1-2 The Effect of Symmetry......Page 627
6.1-3 Determining the Fundamental Frequency and Period......Page 629
6.2 EXISTENCE AND CONVERGENCE OF THE FOURIER SERIES......Page 632
6.2-1 Convergence of a Series......Page 633
6.2-2 The Role of Amplitude and Phase Spectra in Waveshaping......Page 635
6.3 EXPONENTIAL FOURIER SERIES......Page 641
6.3-1 Exponential Fourier Spectra......Page 644
6.3-2 Parseval’s Theorem......Page 652
6.3-3 Properties of the Fourier Series......Page 655
6.4 LTIC SYSTEM RESPONSE TO PERIODIC INPUTS......Page 657
6.5 GENERALIZED FOURIER SERIES:SIGNALS AS VECTORS......Page 661
6.5-1 Component of a Vector......Page 662
6.5-2 Signal Comparison and Component of a Signal......Page 663
6.5-3 Extension to Complex Signals......Page 665
6.5-4 Signal Representation by an Orthogonal Signal Set......Page 667
6.6 NUMERICAL COMPUTATION OF D_n......Page 679
6.7-1 Periodic Functions and the Gibbs Phenomenon......Page 681
6.7-2 Optimization and Phase Spectra......Page 684
6.8 SUMMARY......Page 687
REFERENCES......Page 688
PROBLEMS......Page 689
7.1 APERIODIC SIGNAL REPRESENTATION BY THE FOURIER INTEGRAL......Page 700
7.1-1 Physical Appreciation of the Fourier Transform......Page 707
7.2 TRANSFORMS OF SOME USEFUL FUNCTIONS......Page 709
7.2-1 Connection Between the Fourier and Laplace Transforms......Page 720
7.3 SOME PROPERTIES OF THE FOURIER TRANSFORM......Page 721
7.4 SIGNAL TRANSMISSION THROUGH LTIC SYSTEMS......Page 741
7.4-1 Signal Distortion During Transmission......Page 743
7.4-2 Bandpass Systems and Group Delay......Page 746
7.5 IDEAL AND PRACTICAL FILTERS......Page 750
7.6 SIGNAL ENERGY......Page 753
7.7 APPLICATION TO COMMUNICATIONS: AMPLITUDE MODULATION......Page 756
7.7-1 Double-Sideband, Suppressed-Carrier (DSB-SC) Modulation......Page 757
7.7-2 Amplitude Modulation (AM)......Page 762
7.7-3 Single-Sideband Modulation (SSB)......Page 766
7.8 DATA TRUNCATION: WINDOW FUNCTIONS......Page 769
7.9 MATLAB: FOURIER TRANSFORM TOPICS......Page 775
7.9-1 The Sinc Function and the Scaling Property......Page 777
7.9-2 Parseval’s Theorem and Essential Bandwidth......Page 778
7.9-3 Spectral Sampling......Page 779
7.9-4 Kaiser Window Functions......Page 780
7.10 SUMMARY......Page 782
REFERENCES......Page 783
PROBLEMS......Page 784
8.1 THE SAMPLING THEOREM......Page 796
8.1-1 Practical Sampling......Page 801
8.2 SIGNAL RECONSTRUCTION......Page 805
8.2-1 Practical Difficulties in Signal Reconstruction......Page 808
8.2-2 Some Applications of the Sampling Theorem......Page 816
8.3 ANALOG-TO-DIGITAL (A/D) CONVERSION......Page 819
8.4 DUAL OF TIME SAMPLING: SPECTRAL SAMPLING......Page 822
8.5 NUMERICAL COMPUTATION OF THE FOURIER TRANSFORM: THE DISCRETE FOURIER TRANSFORM......Page 825
8.5-1 Some Properties of the DFT......Page 838
8.5-2 Some Applications of the DFT......Page 840
8.6 THE FAST FOURIER TRANSFORM (FFT)......Page 844
8.7-1 Computing the Discrete Fourier Transform......Page 847
8.7-2 Improving the Picture with Zero Padding......Page 849
8.7-3 Quantization......Page 851
8.8 SUMMARY......Page 854
PROBLEMS......Page 855
9.1 DISCRETE-TIME FOURIER SERIES (DTFS)......Page 865
9.1-1 Periodic Signal Representation by Discrete-Time Fourier Series......Page 866
9.1-2 Fourier Spectra of a Periodic Signal x[n]......Page 868
9.2 APERIODIC SIGNAL REPRESENTATION BY FOURIER INTEGRAL......Page 875
9.2-1 Nature of Fourier Spectra......Page 878
9.2-2 Connection Between the DTFT and the z-Transform......Page 886
9.3 PROPERTIES OF THE DTFT......Page 887
9.4 LTI DISCRETE-TIME SYSTEM ANALYSIS BY DTFT......Page 898
9.4-1 Distortionless Transmission......Page 900
9.4-2 Ideal and Practical Filters......Page 902
9.5 DTFT CONNECTION WITH THE CTFT......Page 903
9.5-1 Use of DFT and FFT for Numerical Computation of the DTFT......Page 905
9.6 GENERALIZATION OF THE DTFT TO THE z-TRANSFORM......Page 906
9.7-1 Computing the Discrete-Time Fourier Series......Page 909
9.7-2 Measuring Code Performance......Page 911
9.7-3 FIR Filter Design by Frequency Sampling......Page 912
REFERENCE......Page 918
PROBLEMS......Page 919
10 STATE-SPACE ANALYSIS......Page 928
10.1-1 Derivatives and Integrals of aMatrix......Page 929
10.1-2 The Characteristic Equation of a Matrix: The Cayley–Hamilton Theorem......Page 930
10.1-3 Computation of an Exponential and a Power of aMatrix......Page 932
10.2 INTRODUCTION TO STATE SPACE......Page 933
10.3-1 Electrical Circuits......Page 936
10.3-2 State Equations from a Transfer Function......Page 939
10.4 SOLUTION OF STATE EQUATIONS......Page 946
10.4-1 Laplace Transform Solution of State Equations......Page 947
10.4-2 Time-Domain Solution of State Equations......Page 953
10.5 LINEAR TRANSFORMATION OF A STATE VECTOR......Page 959
10.5-1 Diagonalization of Matrix A......Page 963
10.6 CONTROLLABILITY AND OBSERVABILITY......Page 967
10.7 STATE-SPACE ANALYSIS OF DISCRETE-TIME SYSTEMS......Page 973
10.7-1 Solution in State Space......Page 975
10.7-2 The z-Transform Solution......Page 979
10.8-1 z-Transform Solutions to Discrete-Time, State-Space Systems......Page 981
10.8-2 Transfer Functions from State-Space Representations......Page 984
10.8-3 Controllability and Observability of Discrete-Time Systems......Page 985
10.8-4 Matrix Exponentiation and the Matrix Exponential......Page 988
10.9 SUMMARY......Page 989
PROBLEMS......Page 990
INDEX......Page 995