Linear algebraic groups

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Tom de Medts
Series: lecture notes
Edition: version 2019-02-25
Year: 2019

Language: English
Commentary: Downloaded from https://algebra.ugent.be/~tdemedts/files/LinearAlgebraicGroups-TomDeMedts.pdf

Preface iii
1 Introduction 1
1.1 First examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The building bricks . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Finite algebraic groups . . . . . . . . . . . . . . . . . . 3
1.2.2 Abelian varieties . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Semisimple linear algebraic groups . . . . . . . . . . . 3
1.2.4 Groups of multiplicative type and tori . . . . . . . . . 5
1.2.5 Unipotent groups . . . . . . . . . . . . . . . . . . . . . 5
1.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Solvable groups . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Reductive groups . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Disconnected groups . . . . . . . . . . . . . . . . . . . 7
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Algebras 9
2.1 Definitions and examples . . . . . . . . . . . . . . . . . . . . . 9
2.2 Tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Tensor products of K-modules . . . . . . . . . . . . . . 12
2.2.2 Tensor products of K-algebras . . . . . . . . . . . . . . 15
3 Categories 19
3.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . 19
3.2 Functors and natural transformations . . . . . . . . . . . . . . 21
3.3 The Yoneda Lemma . . . . . . . . . . . . . . . . . . . . . . . 25
4 Algebraic geometry 31
4.1 Affine varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 The coordinate ring of an affine variety . . . . . . . . . . . . . 36
4.3 Affine varieties as functors . . . . . . . . . . . . . . . . . . . . 40
5 Linear algebraic groups 43
5.1 Affine algebraic groups . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Closed subgroups . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Homomorphisms and quotients . . . . . . . . . . . . . . . . . 54
5.4 Affine algebraic groups are linear . . . . . . . . . . . . . . . . 56
6 Jordan decomposition 63
6.1 Jordan decomposition in GL(V ) . . . . . . . . . . . . . . . . . 63
6.2 Jordan decomposition in linear algebraic groups . . . . . . . . 67
7 Lie algebras and linear algebraic groups 73
7.1 Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 The Lie algebra of a linear algebraic group . . . . . . . . . . . 76
8 Topological aspects 83
8.1 Connected components of matrix groups . . . . . . . . . . . . 83
8.2 The spectrum of a ring . . . . . . . . . . . . . . . . . . . . . . 84
8.3 Separable algebras . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4 Connected components of linear algebraic groups . . . . . . . 90
8.5 Dimension and smoothness . . . . . . . . . . . . . . . . . . . . 94
9 Tori and characters 97
9.1 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.2 Diagonalizable groups . . . . . . . . . . . . . . . . . . . . . . . 98
9.3 Tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10 Solvable linear algebraic groups 105
10.1 The derived subgroup of a linear algebraic group . . . . . . . . 105
10.2 The structure of solvable linear algebraic groups . . . . . . . . 107
10.3 Borel subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11 Semisimple and reductive groups 117
11.1 Semisimple and reductive linear algebraic groups . . . . . . . . 117
11.2 The root datum of a reductive group . . . . . . . . . . . . . . 121
11.3 Classification of the root data . . . . . . . . . . . . . . . . . . 131
References 136