Lie Groups

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition.

For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.

Author(s): Daniel Bump (auth.)
Series: Graduate Texts in Mathematics 225
Edition: 2
Publisher: Springer-Verlag New York
Year: 2013

Language: English
Pages: 551
City: New York
Tags: Topological Groups, Lie Groups

Front Matter....Pages i-xiii
Front Matter....Pages 1-1
Haar Measure....Pages 3-5
Schur Orthogonality....Pages 7-17
Compact Operators....Pages 19-22
The Peter–Weyl Theorem....Pages 23-28
Front Matter....Pages 29-29
Lie Subgroups of $$\mathrm{GL}(n, \mathbb{C})$$ ....Pages 31-37
Vector Fields....Pages 39-43
Left-Invariant Vector Fields....Pages 45-49
The Exponential Map....Pages 51-55
Tensors and Universal Properties....Pages 57-60
The Universal Enveloping Algebra....Pages 61-66
Extension of Scalars....Pages 67-70
Representations of $$\mathfrak{s}\mathfrak{l}(2, \mathbb{C})$$ ....Pages 71-79
The Universal Cover....Pages 81-91
The Local Frobenius Theorem....Pages 93-99
Tori....Pages 101-108
Geodesics and Maximal Tori....Pages 109-121
The Weyl Integration Formula....Pages 123-128
The Root System....Pages 129-144
Examples of Root Systems....Pages 145-155
Abstract Weyl Groups....Pages 157-167
Front Matter....Pages 29-29
Highest Weight Vectors....Pages 169-175
The Weyl Character Formula....Pages 177-190
The Fundamental Group....Pages 191-201
Front Matter....Pages 203-203
Complexification....Pages 205-211
Coxeter Groups....Pages 213-226
The Borel Subgroup....Pages 227-242
The Bruhat Decomposition....Pages 243-256
Symmetric Spaces....Pages 257-280
Relative Root Systems....Pages 281-301
Embeddings of Lie Groups....Pages 303-318
Spin....Pages 319-334
Front Matter....Pages 335-335
Mackey Theory....Pages 337-347
Characters of $$\mathrm{GL}(n, \mathbb{C})$$ ....Pages 349-353
Duality Between S k and $$\mathrm{GL}(n, \mathbb{C})$$ ....Pages 355-363
The Jacobi–Trudi Identity....Pages 365-377
Schur Polynomials and $$\mathrm{GL}(n, \mathbb{C})$$ ....Pages 379-385
Schur Polynomials and S k ....Pages 387-393
The Cauchy Identity....Pages 395-406
Random Matrix Theory....Pages 407-417
Symmetric Group Branching Rules and Tableaux....Pages 419-426
Front Matter....Pages 335-335
Unitary Branching Rules and Tableaux....Pages 427-435
Minors of Toeplitz Matrices....Pages 437-444
The Involution Model for S k ....Pages 445-454
Some Symmetric Algebras....Pages 455-460
Gelfand Pairs....Pages 461-469
Hecke Algebras....Pages 471-483
The Philosophy of Cusp Forms....Pages 485-515
Cohomology of Grassmannians....Pages 517-527
Back Matter....Pages 529-551