Lectures on the Poisson Process

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The Poisson process, a core object in modern probability, enjoys a richer theory than is sometimes appreciated. This volume develops the theory in the setting of a general abstract measure space, establishing basic results and properties as well as certain advanced topics in the stochastic analysis of the Poisson process. Also discussed are applications and related topics in stochastic geometry, including stationary point processes, the Boolean model, the Gilbert graph, stable allocations, and hyperplane processes. Comprehensive, rigorous, and self-contained, this text is ideal for graduate courses or for self-study, with a substantial number of exercises for each chapter. Mathematical prerequisites, mainly a sound knowledge of measure-theoretic probability, are kept in the background, but are reviewed comprehensively in the appendix. The authors are well-known researchers in probability theory; especially stochastic geometry. Their approach is informed both by their research and by their extensive experience in teaching at undergraduate and graduate levels.

Author(s): Gunter Last, Mathew Penrose
Series: Institute of Mathematical Statistics Textbooks 7
Publisher: Cambridge University Press
Year: 2018

Language: English
Pages: 315

Contents......Page 10
Preface......Page 16
List of Symbols......Page 20
1.1 The Poisson Distribution......Page 22
1.2 Relationships Between Poisson and Binomial Distributions......Page 24
1.3 The Poisson Limit Theorem......Page 25
1.4 The Negative Binomial Distribution......Page 26
1.5 Exercises......Page 28
2.1 Fundamentals......Page 30
2.2 Campbell’s Formula......Page 33
2.3 Distribution of a Point Process......Page 35
2.4 Point Processes on Metric Spaces......Page 37
2.5 Exercises......Page 39
3.1 Definition of the Poisson Process......Page 40
3.2 Existence of Poisson Processes......Page 41
3.3 Laplace Functional of the Poisson Process......Page 44
3.4 Exercises......Page 45
4.1 The Mecke Equation......Page 47
4.2 Factorial Measures and the Multivariate Mecke Equation......Page 49
4.3 Janossy Measures......Page 53
4.4 Factorial Moment Measures......Page 55
4.5 Exercises......Page 57
5.1 Mappings and Restrictions......Page 59
5.2 The Marking Theorem......Page 60
5.3 Thinnings......Page 63
5.4 Exercises......Page 65
6.1 Borel Spaces......Page 67
6.2 Simple Point Processes......Page 70
6.3 Renyi’s Theorem......Page 71
6.4 Completely Orthogonal Point Processes......Page 73
6.5 Turning Distributional into Almost Sure Identities......Page 75
6.6 Exercises......Page 77
7.1 The Interval Theorem......Page 79
7.2 Marked Poisson Processes......Page 82
7.3 Record Processes......Page 84
7.4 Polar Representation of Homogeneous Poisson Processes......Page 86
7.5 Exercises......Page 87
8.1 Stationarity......Page 90
8.2 The Pair Correlation Function......Page 92
8.3 Local Properties......Page 95
8.4 Ergodicity......Page 96
8.5 A Spatial Ergodic Theorem......Page 98
8.6 Exercises......Page 101
9.1 Definition and Basic Properties......Page 103
9.2 The Mecke–Slivnyak Theorem......Page 105
9.3 Local Interpretation of Palm Distributions......Page 106
9.4 Voronoi Tessellations and the Inversion Formula......Page 108
9.5 Exercises......Page 110
10.1 The Extra Head Problem......Page 113
10.2 The Point-Optimal Gale–Shapley Algorithm......Page 116
10.3 Existence of Balanced Allocations......Page 118
10.4 Allocations with Large Appetite......Page 120
10.6 Exercises......Page 122
11.1 Stability......Page 124
11.3 Optimality of the Gale–Shapley Algorithms......Page 125
11.4 Uniqueness of Stable Allocations......Page 128
11.5 Moment Properties......Page 129
11.6 Exercises......Page 130
12.1 The Wiener–Ito Integral......Page 132
12.2 Higher Order Wiener–Ito Integrals......Page 135
12.3 Poisson U-Statistics......Page 139
12.4 Poisson Hyperplane Processes......Page 143
12.5 Exercises......Page 145
13.1 Random Measures......Page 148
13.2 Cox Processes......Page 150
13.3 The Mecke Equation for Cox Processes......Page 152
13.4 Cox Processes on Metric Spaces......Page 153
13.5 Exercises......Page 154
14.1 Definition and Uniqueness......Page 157
14.2 The Stationary Case......Page 159
14.3 Moments of Gaussian Random Variables......Page 160
14.4 Construction of Permanental Processes......Page 162
14.5 Janossy Measures of Permanental Cox Processes......Page 166
14.6 One-Dimensional Marginals of Permanental Cox Processes......Page 168
14.7 Exercises......Page 172
15.1 Definition and Basic Properties......Page 174
15.2 Moments of Symmetric Compound Poisson Processes......Page 178
15.3 Poisson Representation of Completely Random Measures......Page 179
15.4 Compound Poisson Integrals......Page 182
15.5 Exercises......Page 184
16.1 Capacity Functional......Page 187
16.2 Volume Fraction and Covering Property......Page 189
16.3 Contact Distribution Functions......Page 191
16.4 The Gilbert Graph......Page 192
16.5 The Point Process of Isolated Nodes......Page 197
16.6 Exercises......Page 198
17.1 Capacity Functional......Page 200
17.2 Spherical Contact Distribution Function and Covariance......Page 203
17.3 Identifiability of Intensity and Grain Distribution......Page 204
17.4 Exercises......Page 206
18.1 Difference Operators......Page 208
18.2 Fock Space Representation......Page 210
18.3 The Poincare´ Inequality......Page 214
18.4 Chaos Expansion......Page 215
18.5 Exercises......Page 216
19.1 A Perturbation Formula......Page 218
19.2 Power Series Representation......Page 221
19.3 Additive Functions of the Boolean Model......Page 224
19.4 Surface Density of the Boolean Model......Page 227
19.5 Mean Euler Characteristic of a Planar Boolean Model......Page 228
19.6 Exercises......Page 229
20.1 Mehler’s Formula......Page 232
20.2 Two Covariance Identities......Page 235
20.4 Exercises......Page 238
21.1 Stein’s Method......Page 240
21.2 Normal Approximation via Difference Operators......Page 242
21.3 Normal Approximation of Linear Functionals......Page 246
21.4 Exercises......Page 247
22.1 Normal Approximation of the Volume......Page 248
22.2 Normal Approximation of Additive Functionals......Page 251
22.3 Central Limit Theorems......Page 256
22.4 Exercises......Page 258
A.1 General Measure Theory......Page 260
A.2 Metric Spaces......Page 271
A.3 Hausdorff Measures and Additive Functionals......Page 273
A.4 Measures on the Real Half-Line......Page 278
A.5 Absolutely Continuous Functions......Page 280
B.1 Fundamentals......Page 282
B.2 Mean Ergodic Theorem......Page 285
B.3 The Central Limit Theorem and Stein’s Equation......Page 287
B.4 Conditional Expectations......Page 289
B.5 Gaussian Random Fields......Page 290
Appendix C Historical Notes......Page 293
References......Page 302
Index......Page 310