Lectures on polyhedral topology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): John R Stallings
Publisher: Tata Institute of Fundamental Research
Year: 1967

Language: English
Commentary: bookmarks, searchable
Pages: 263
City: Bombay

Table of contents......Page 2
Introduction......Page 5
1 Definition of polyhedra......Page 8
2 Convexity......Page 9
3 Open convex sets......Page 16
4 Calculus of boundaries......Page 20
5 Convex cells......Page 26
6 Presentations of polyhedra......Page 31
7 Refinement by bisection......Page 34
1 Triangulation of polyhedra......Page 39
2 Triangulation of maps......Page 41
III Topology and approximation......Page 47
1 Neighborhoods that retract......Page 48
2 Approximation theorem......Page 50
3 Mazur's criterion......Page 55
1 Abstract theory I......Page 58
2 Abstract theory II......Page 62
3 Geometric theory......Page 65
4 Polyhedral cells, spheres and manifolds......Page 76
5 Recalling homotopy facts......Page 83
V General position......Page 86
1 Nondegeneracy......Page 87
2 ND(n)-spaces. Definition and elementary properties......Page 90
3 Characterizations of ND(n)-spaces......Page 93
4 Singularity dimension......Page 102
VI Regular neighborhoods......Page 119
1 Isotopy......Page 120
2 Centerings, isotopies and neighborhoods of subpolyhedra......Page 122
3 Definition of 'regular neighborhood'......Page 128
4 Collaring......Page 131
5 Absolute regular neighborhhods and some Newmanish theorems......Page 140
6 Collapsing......Page 145
7 Homogeneous collapsing......Page 149
8 The regular neighborhood theorem......Page 154
9 Some applications and remarks......Page 166
10 Conclusion......Page 170
1 Regular collapsing......Page 173
2 Applications......Page 184
Appendix to Chapter VII......Page 189
1 Handles......Page 196
2 Relative n-manifolds and their handle presentations......Page 198
3 Statement of the theorems, applications, comments......Page 203
4 Modification of handle presentations......Page 215
5 Cancellation of handles......Page 220
6 Insertion of cancelling pairs of handles......Page 227
7 Elimination of 0- and 1-handles......Page 236
8 Dualisation......Page 240
9 Algebraic description......Page 243
10 Proofs of the main theorems (A and B)......Page 251
11 Proof of the Isotopy Lemma......Page 258