Author(s): Tai-Peng Tsai
Series: Graduate Studies in Mathematics 192
Publisher: American Mathematical Society
Year: 2017
Language: English
Pages: 239
Cover......Page 1
Title page......Page 4
Contents......Page 6
Preface......Page 10
Notation......Page 12
1.1. Navier-Stokes equations......Page 14
1.2. Derivation of Navier-Stokes equations......Page 16
1.3. Scaling and a priori estimates......Page 19
1.4. Vorticity......Page 20
1.5. Pressure......Page 23
1.6. Helmholtz decomposition......Page 26
Problems......Page 30
2.1. Weak solutions......Page 32
2.2. Small-large uniqueness......Page 35
2.3. Existence for zero boundary data by the Galerkin method......Page 36
2.4. Existence for zero boundary data by the Leray-Schauder theorem......Page 38
2.5. Nonuniqueness......Page 42
2.6. ��^{��}-theory for the linear system......Page 45
2.7. Regularity......Page 51
2.8. The Bogovskii map......Page 58
2.9. Notes......Page 60
Problems......Page 61
3.1. Weak form, energy inequalities, and definitions......Page 64
3.2. Auxiliary results......Page 68
3.3. Existence for the perturbed Stokes system......Page 71
3.4. Compactness lemma......Page 73
3.5. Existence of suitable weak solutions......Page 75
3.6. Notes......Page 80
Problems......Page 81
Chapter 4. Strong solutions......Page 82
4.1. Dimension analysis......Page 83
4.2. Uniqueness......Page 84
4.3. Regularity......Page 88
Problems......Page 90
5.1. Nonstationary Stokes system and Stokes semigroup......Page 92
5.2. Existence of mild solutions......Page 96
5.3. Applications to weak solutions......Page 102
Problems......Page 105
Chapter 6. Partial regularity......Page 106
6.1. The set of singular times......Page 107
6.2. The set of singular space-time points......Page 109
6.3. Regularity criteria in scaled norm......Page 110
6.4. Notes......Page 118
Problems......Page 119
Chapter 7. Boundary value problem and bifurcation......Page 120
7.1. Existence: A priori bound by a good extension......Page 121
7.2. Existence: A priori bound by contradiction......Page 125
7.3. The Korobkov-Pileckas-Russo approach for 2D BVP......Page 129
7.4. The bifurcation problem and degree......Page 136
7.5. Bifurcation of the Rayleigh-Bénard convection......Page 141
7.6. Bifurcation of Couette-Taylor flows......Page 146
7.7. Notes......Page 152
Problems......Page 153
8.1. Self-similar solutions and similarity transform......Page 154
8.2. Stationary self-similar solutions......Page 158
8.3. Backward self-similar solutions......Page 163
8.4. Forward self-similar solutions......Page 171
Problems......Page 184
Chapter 9. The uniform ��³ class......Page 186
9.1. Uniqueness......Page 187
9.2. Auxiliary results for regularity......Page 189
9.3. Regularity......Page 191
9.4. Backward uniqueness and unique continuation......Page 197
9.5. Notes......Page 200
10.1. Axisymmetric Navier-Stokes equations......Page 202
10.2. No swirl case......Page 208
10.3. Type I singularity: De Giorgi-Nash-Moser approach......Page 210
10.4. Type I singularity: Liouville theorem approach......Page 219
10.5. Connections between the two approaches......Page 222
10.6. Notes......Page 223
Bibliography......Page 224
Index......Page 236
Back Cover......Page 239