Lecture Notes In Statistics Bayesian Spectrum Analysis And Parameter Estimation

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is primarily a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, chemists, economists, and engineers who have to deal with data on a daily basis; consequently, we have included a great deal of introductory and tutorial material. Any person with the equivalent of the mathematics background required for the graduate-level study of physics should be able to follow the material contained in this book, though not without effort. In this work we apply probability theory to the problem of estimating parameters in rather general models. In particular when the model consists of a single stationary sinusoid we show that the direct application of probability theory will yield frequency estimates an order of magnitude better than a discrete Fourier transform in signal-to-noise of one. Latter, we generalize the problem and show that probability theory can separate two close frequencies long after the peaks in a discrete Fourier transform have merged.

Author(s): G. Larry Bretthorst
Series: Lecture Notes in Statistics
Edition: 1
Publisher: Springer
Year: 1988

Language: English
Pages: 220