Lebesgue integration on Euclidean space

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Lebesgue Integration on Euclidean Space contains a concrete, intuitive, and patient derivation of Lebesgue measure and integration on Rn. Throughout the text, many exercises are incorporated, enabling students to apply new ideas immediately. Jones strives to present a slow introduction to Lebesgue integration by dealing with n-dimensional spaces from the outset. In addition, the text provides students a through treatment of Fourier analysis, while holistically preparing students to become "workers" in real analysis.

Author(s): Frank Jones
Series: Jones and Bartlett books in mathematics
Edition: Rev. ed
Publisher: Jones and Bartlett
Year: 2001

Language: English
Pages: 611
City: Sudbury, Mass
Tags: Математика;Функциональный анализ;

Front cover......Page 1
Various Integration Formulas......Page 3
Various Special Integrals and Sums......Page 4
Title......Page 5
Series......Page 6
Title page......Page 7
Date-line......Page 8
Contents......Page 9
Preface......Page 13
Bibliography......Page 15
Acknowledgments......Page 17
Dedication......Page 19
A Sets......Page 21
B Countable Sets......Page 24
C Topology......Page 25
D Compact Sets......Page 30
E Continuity......Page 35
F The Distance Function......Page 40
A Construction......Page 45
B Properties of Lebesgue Measure......Page 69
C Appendix: Proof of P1 and P2......Page 80
3 Invariance of Lebesgue Measure......Page 85
A Some Linear Algebra......Page 86
B Translation and Dilation......Page 91
C Orthogonal Matrices......Page 93
D The General Matrix......Page 95
A A Nonmeasurable Set......Page 101
B A Bevy of Cantor Sets......Page 103
C The Lebesgue Function......Page 106
D Appendix: The Modulus of Continuity of the Lebesgue Functions......Page 115
A Algebras and $\sigma$-Algebras......Page 123
B Borel Sets......Page 127
C A Measurable Set which Is Not a Borel Set......Page 130
D Measurable Functions......Page 132
E Simple Functions......Page 137
A Nonnegative Functions......Page 141
B General Measurable Functions......Page 150
C Almost Everywhere......Page 155
D Integration Over Subsets of $\mathbb{R}^n$......Page 159
E Generalization: Measure Spaces......Page 162
F Some Calculations......Page 167
G Miscellany......Page 172
A Riemann Integral......Page 177
B Linear Change of Variables......Page 190
C Approximation of Functions in $L^1$......Page 191
D Continuity of Translation in $L^1$......Page 200
8 Fubini's Theorem for $\mathbb{R}^n$......Page 201
A Definition and Simple Properties......Page 219
B Generalization......Page 222
C The Measure of Balls......Page 225
D Further Properties of the Gamma Function......Page 229
E Stirling's Formula......Page 232
F The Gamma Function on $\mathbb{R}$......Page 236
A Definition and Basic Inequalities......Page 241
B Metric Spaces and Normed Spaces......Page 247
C Completeness of $L^p$......Page 251
D The Case $p=\infty$......Page 255
E Relations between $L^p$ Spaces......Page 258
F Approximation by $C_c^\infty(\mathbb{R}^n)$......Page 264
G Miscellaneous Problems......Page 266
H The Case $0A Products of $\sigma$-Algebras......Page 275
B Monotone Classes......Page 278
C Construction of the Product Measure......Page 281
D The Fubini Theorem......Page 288
E The Generalized Minkowski Inequality......Page 291
A Formal Properties......Page 297
B Basic Inequalities......Page 300
C Approximate Identities......Page 304
A Fourier Transform of Functions in $L^1(\mathbb{R}^n)$......Page 313
B The Inversion Theorem......Page 328
C The Schwartz Class......Page 340
D The Fourier-Plancherel Transform......Page 343
E Hilbert Space......Page 354
F Formal Application to Differential Equations......Page 359
G Bessel Functions......Page 364
H Special Results for $n=1$......Page 372
I Hermite Polynomials......Page 376
A Periodic Functions......Page 387
B Trigonometric Series......Page 393
C Fourier Coefficients......Page 412
D Convergence of Fourier Series......Page 420
E Summability of Fourier Series......Page 430
F A Counterexample......Page 438
G Parseval's Identity......Page 441
H Poisson Summation Formula......Page 448
I A Special Class of Sine Series......Page 456
15 Differentiation......Page 467
A The Vitali Covering Theorem......Page 468
B The Hardy-Littlewood Maximal Function......Page 470
C Lebesgue's Differentiation Theorem......Page 476
D The Lebesgue Set of a Function......Page 478
E Points of Density......Page 483
F Applications......Page 486
G The Vitali Covering Theorem (Again)......Page 498
H The Besicovitch Covering Theorem......Page 502
I The Lebesgue Set of Order $p$......Page 511
J Change of Variables......Page 514
K Noninvertible Mappings......Page 525
A Monotone Functions......Page 531
B Jump Functions......Page 541
C Another Theorem of Fubini......Page 547
D Bounded Variation......Page 550
E Absolute Continuity......Page 564
F Further Discussion of Absolute Continuity......Page 573
G Arc Length......Page 583
H Nowhere Differentiate Functions......Page 590
I Convex Functions......Page 596
Index......Page 601
Symbol Index......Page 607
Assorted Facts......Page 609
Fourier Transform Table......Page 610
Back cover......Page 611