Lattices of intermediate and cylindric modal logics [PhD Thesis]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Nick Bezhanishvili
Series: ILLC Dissertation Series DS-2006-02
Publisher: University of Amsterdam
Year: 2006

Language: English
Pages: 240
City: Amsterdam

1 Introduction 1
I Lattices of intermediate logics 9
2 Algebraic semantics for intuitionistic logic 11
2.1 Intuitionistic logic and intermediate logics . . . . . . . . . . . . . 11
2.1.1 Syntax and semantics . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Basic properties of intermediate logics . . . . . . . . . . . 17
2.2 Heyting algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Lattices, distributive lattices and Heyting algebras . . . . . 19
2.2.2 Algebraic completeness of IPC and its extensions . . . . . 23
2.2.3 Heyting algebras and Kripke frames . . . . . . . . . . . . . 26
2.3 Duality for Heyting algebras . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Descriptive frames . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Subdirectly irreducible Heyting algebras . . . . . . . . . . 32
2.3.3 Order-topological duality . . . . . . . . . . . . . . . . . . . 33
2.3.4 Duality of categories . . . . . . . . . . . . . . . . . . . . . 36
2.3.5 Properties of logics and algebras . . . . . . . . . . . . . . . 37
3 Universal models and frame-based formulas 39
3.1 Finitely generated Heyting algebras . . . . . . . . . . . . . . . . . 39
3.2 Free Heyting algebras and n-universal models . . . . . . . . . . . 46
3.2.1 n-universal models . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Free Heyting algebras . . . . . . . . . . . . . . . . . . . . . 49
3.3 The Jankov-de Jongh and subframe formulas . . . . . . . . . . . . 56
3.3.1 Formulas characterizing point generated subsets . . . . . . 56
3.3.2 The Jankov-de Jongh theorem . . . . . . . . . . . . . . . . 58
3.3.3 Subframes, subframe and cofinal subframe formulas . . . . 59
3.4 Frame-based formulas . . . . . . . . . . . . . . . . . . . . . . . . . 65
4 The logic of the Rieger-Nishimura ladder 79
4.1 n-conservative extensions, linear and vertical sums . . . . . . . . . 80
4.1.1 The Rieger-Nishimura lattice and ladder . . . . . . . . . . 80
4.1.2 n-conservative extensions and the n-scheme logics . . . . . 83
4.1.3 Sums of Heyting algebras and descriptive frames . . . . . . 85
4.2 Finite frames of RN . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 The Kuznetsov-Gerciu logic . . . . . . . . . . . . . . . . . . . . . 93
4.4 The finite model property in extensions of RN . . . . . . . . . . . 98
4.5 The finite model property in extensions of KG . . . . . . . . . . . 105
4.5.1 Extensions of KG without the finite model property . . . 105
4.5.2 The pre-finite model property . . . . . . . . . . . . . . . . 111
4.5.3 The axiomatization of RN . . . . . . . . . . . . . . . . . . 114
4.6 Locally tabular extensions of RN and KG . . . . . . . . . . . . . 117
II Lattices of cylindric modal logics 121
5 Cylindric modal logic and cylindric algebras 123
5.1 Modal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.1.1 Modal algebras . . . . . . . . . . . . . . . . . . . . . . . . 126
5.1.2 Jonsson-Tarski representation . . . . . . . . . . . . . . . . 127
5.2 Many-dimensional modal logics . . . . . . . . . . . . . . . . . . . 130
5.2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.2 Products of modal logics . . . . . . . . . . . . . . . . . . . 131
5.3 Cylindric modal logics . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.1 S5 x S5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.2 Cylindric modal logic with the diagonal . . . . . . . . . . . 135
5.3.3 Product cylindric modal logic . . . . . . . . . . . . . . . . 137
5.3.4 Connection with FOL . . . . . . . . . . . . . . . . . . . . 139
5.4 Cylindric algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.1 Df2-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.4.2 Topological representation . . . . . . . . . . . . . . . . . . 141
5.4.3 CA2-algebras . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.4.4 Representable cylindric algebras . . . . . . . . . . . . . . . 145
6 Normal extensions of S52 149
6.1 The finite model property of S52 . . . . . . . . . . . . . . . . . . 149
6.2 Locally tabular extensions of S52 . . . . . . . . . . . . . . . . . . 155
6.3 Classification of normal extensions of S52 . . . . . . . . . . . . . . 160
6.4 Tabular and pre tabular extension of S52 . . . . . . . . . . . . . . 161
7 Normal extensions of CML2 167
7.1 Finite CML2-frames . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.1.1 The finite model property . . . . . . . . . . . . . . . . . . 167
7.1.2 The Jankov-Fine formulas . . . . . . . . . . . . . . . . . . 170
7.1.3 The cardinality of Λ(CML2) . . . . . . . . . . . . . . . . . 172
7.2 Locally tabular extensions of CML2 . . . . . . . . . . . . . . . . 173
7.3 Tabular and pre-tabular extensions of CML2 . . . . . . . . . . . 178
8 Axiomatization and computational complexity 187
8.1 Finite axiomatization . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.2 The poly-size model property . . . . . . . . . . . . . . . . . . . . 195
8.3 Logics without the linear-size model property . . . . . . . . . . . 199
8.4 NP-completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Bibliography 209
Index 219