This volume comprises a collection of invited and selected contributions presented at the 16th International Conference on Laser Spectroscopy in Palm Cove, Queensland, Australia, 13–18 July 2003. The papers report the latest and most exciting developments in laser spectroscopy and related areas: new ultra-precise spectroscopic measurements based on optical frequency combs including tests of the stability of the fundamental constants; the first realization of Bose–Einstein condensation in cesium and ytterbium; the behavior of ultra-cold bosons and fermions in optical lattices; the production of ultra-cold cesium, helium and fermionic lithium molecules; the production and coherent transport of ultra-cold atoms in microtraps on the surface of chips; the implementation of one- and two-qubit quantum algorithms and experiments towards a scalable quantum computer based on trapped ions; and new medical applications of laser spectroscopy.
Author(s): Peter Hannaford, INTERNATIONAL CONFERENCE ON LASER SPECTR, Andrei Sidorov, Hans Bachor, Ken Baldwin
Publisher: World Scientific Publishing Company
Year: 2004
Language: English
Pages: 416
Contents......Page 10
Precision Spectroscopy......Page 18
1. Introduction......Page 20
2. Optical Frequency Measurements......Page 22
3. New Frequency Measurement of Hydrogen 1S-2S......Page 27
References......Page 29
1. Introduction......Page 31
2. Calcium Optical Frequency Standard......Page 32
2.1. Doppler Problems......Page 33
2.2. Quenched Narrow-Line Cooling......Page 34
3. Optical Frequency Combs and Comparisons of Atomic Standards......Page 36
References......Page 38
1. Introduction......Page 39
2. Engineered Light Shift Trap......Page 40
3.1. Spectroscopy of Bound Atoms......Page 42
3.2. Determination of Degenerate Wavelength......Page 44
Acknowledgments......Page 45
References......Page 46
2. Indirect measurement......Page 47
References......Page 49
1. Single-Stage Sub-Doppler Cooling of 87Sr......Page 51
2. Magnetic Trapping of Metastable 88Sr......Page 52
References......Page 53
2. Calcium Optical Clock......Page 54
References......Page 56
1. Introduction......Page 57
2. Optical-Excitation Scheme......Page 58
3. Experimental Setup......Page 59
4. Spectroscopy of the Reference Transition......Page 60
5. Absolute Transition Frequency and Systematic Frequency Shifts......Page 62
6. Comparison of Two Traps......Page 63
References......Page 64
1. Introduction......Page 66
2. Quasar Absorption Spectra......Page 67
3. Laboratory Comparison of Atomic Clocks......Page 68
References......Page 73
Testing the Stability of Fundamental Constants using Atomic Fountains S. Bize, M. Abgrall, H. Marion, F. Pereira Dos Santos, I. Maksimovic, S. Zhang, Y. Sortais, C. Vian, J. Griinert, L. Cacciapuoti, C, Mandache, Ph. Laurent, P. Lemonde, P. Rosenbusch, G. Santarelli, A. Clairon and C. Salomon......Page 75
References......Page 79
Extending the Optical Comb Synthesizer to the Infrared: From He at 1.083 |J,m to CO2 at 4.2 (Am P. De Natale, S. Borri, P. Cancio, G. Guisfredi, D. Mazzotti, M. Prevedelli, C. de Mauro and M. Inguscio......Page 80
References......Page 84
2. Co-Propagating Configuration: Estimation of the Signal to Noise Ratio......Page 85
3. Counter-Propagating Configuration : Inertial Force Signals......Page 86
References......Page 87
New Optical Tests of Special Relativity H. MiMer, S. Herrmann, C. Braxmaier, A. Peters and S. Schiller......Page 88
References......Page 90
Ultrafast Spectroscopy......Page 92
1. Introduction......Page 94
2. I2 Hyperfine Interactions, Optical Frequency Standards and Clocks......Page 96
3. Femtosecond Lasers and External Optical Cavities......Page 99
References......Page 101
1. Introduction......Page 102
2. Experimental Scheme......Page 104
3.1. Automated Pulse Compression......Page 105
3.2. Gas-Phase Control......Page 106
3.3. Liquid-Phase Control......Page 107
3.4. Polarization Control......Page 108
Acknowledgments......Page 110
References......Page 111
Spectrally Resolved Femtosecond 2-Colour 3-Pulse Photon Echoes for Studies of Molecular Dynamics L.V. Dao, C.N. Lincoln, R.M. Lowe and P. Hannaford......Page 113
References......Page 116
Quantum Degenerate Gases......Page 118
1. Introduction......Page 120
2. Attainment of cesium BEC......Page 121
3. A non-interacting BEG......Page 123
4. Creation of a molecular quantum gas......Page 124
References......Page 126
1. Introduction......Page 128
2. Experiment......Page 129
References......Page 132
1. Introduction: BEG Beyond the Ideal Case......Page 133
3. Production and Observation of an Elongated BEC in an Iron-Core Electromagnet......Page 134
4. Measurement of the Spatial Coherence Function by Bragg Spectroscopy......Page 135
5. Axial Bragg Spectrum of an Elongated Condensate......Page 136
6. Results. Comparison with Theory......Page 138
Conclusion......Page 139
References......Page 140
Experimental Study of a Bose Gas in One Dimension W.D. Phillips, M. Anderlini, J.H. Huckans, B. Laburthe Tolra, KM. O'Hara, J.V. Porto and S.L. Ralston......Page 141
References......Page 144
1. Introduction......Page 146
2. Expansion of a Bose-Einstein Condensate in the Lattice......Page 147
3. Dipolar Oscillations of a Fermi Gas in the Lattice......Page 150
4. Role of Collisions in the Transport of Bosons and Fermions......Page 152
References......Page 153
1. Introduction......Page 154
2. Universal Interactions......Page 155
3. Universal Hydrodynamics......Page 157
4. Experiment......Page 159
5. Conclusions......Page 160
References......Page 161
1. Introduction......Page 162
2. Atomic Quantum Dots Coupled to BEC Reservoirs......Page 163
3. Defect Suppressed Atomic Crystals......Page 165
References......Page 168
1 Introduction......Page 170
2 Spinless Bosons in an Optical Lattice......Page 171
4 Fermions in a Superlattice......Page 173
4-2 Weak Coupling Limit......Page 175
5 Conclusions......Page 176
References......Page 177
1. Introduction......Page 178
1.2. Quantum Computers: Too Small, Too Costly?......Page 179
2. Phase-Space Representations......Page 180
2.1. Method in Outline......Page 181
3. Master Equation......Page 182
4. Grand Canonical Ensembles......Page 183
5. Quantum Dynamics......Page 184
6. Strategies and Future Developments......Page 186
References......Page 187
2. Quantized Vortices......Page 188
3. Mechanisms of Vortex Formation......Page 189
4. Vortex Growth Equation......Page 190
5. Influence of Noise and Fluctuations—Primordial Vortices......Page 191
References......Page 193
A Storage Ring for Bose-Einstein Condensates C.S. Garvie, E. Riis and A.S. Arnold......Page 195
References......Page 197
Bragg Spectroscopy of an Accelerating Bose-Einstein Condensate K.J. Challis, R.W. Geursen, R.J. Ballagh and A.C. Wilson......Page 198
References......Page 200
1. Dispersion Management......Page 201
2. Atomic Gap Solitons......Page 202
References......Page 203
All-Optical Realization of an Atom Laser Based on Field-Insensitive Bose-Einstein Condensates G. Cennini, G. Ritt, C. Geckeler and M. Weitz......Page 204
References......Page 207
Dynamical Effects of Back-Coupling on an Atom Laser N.P. Robins, J.E. Lye, C.S. Fletcher, S.A. Haine, J. Dugue, C. Breme, J.J. Hope and J.D. Close......Page 208
References......Page 210
Cold Molecules and Cold Collisions......Page 212
1. Introduction......Page 214
3. Hamiltonian of the 2S — 2P Molecule......Page 216
4. Calculation of Molecular Potentials Using the Mapped Fourier Grid Method......Page 218
5. Results......Page 219
6. Conclusion......Page 220
References......Page 221
Production of Long-Lived Ultra-Cold Li2 Molecules from a Fermi Gas J. Cubizolles, T. Bourdel, S.J.J.M.F. Kokkelmans, C. Salomon and G. Shlyapnikov......Page 222
References......Page 227
1. Introduction......Page 229
2. What is Meant by Resonant Interactions......Page 230
3. Time-Dependent Fields; Dynamic Cooper Pairing......Page 233
4. Resonance Superfluidity in Fermion Gases......Page 234
References......Page 236
Atom Optics and Interferometry......Page 238
1. Introduction......Page 240
2. Preparation of Cold Atoms......Page 241
3. Fragmentation......Page 242
4. Thermal Fluctuations......Page 245
5. Conclusions......Page 246
References......Page 247
1. Introduction......Page 248
2. Experiment......Page 249
3. Discussion......Page 251
References......Page 252
Atom Optics with Microtraps and Atom Chips: Assembling Tools for Quantum Information Processing L. Feenstra, K. Brugger, R. Folman, S. Groth, A. Kasper, P. Krtiger, X. Luo, S. Schneider, S. Wildermuth andJ. Schmiedmayer......Page 254
References......Page 258
1. Introduction......Page 259
2. Anomalous Magnetic Field......Page 260
3. Dynamics of Condensates in Waveguides......Page 262
4. On-chip Laboratory for Bose-Einstein Condensation......Page 263
References......Page 264
Integrated Atom Optics......Page 265
Quantum Information Processing......Page 267
References......Page 269
A Controllable Diffraction Grating for Matter Waves H. Oberst, S. Kasashima, F. Shimizu and V. I. Balykin......Page 270
References......Page 272
Cavity QED......Page 274
1. Introduction......Page 276
2. Trapping and Cooling in an Intracavity FORT......Page 278
3. New Theoretical Protocols......Page 279
5. Quantum Information Processing with Atomic Ensembles......Page 280
References......Page 281
1. Atom Interacting with a Field in a Cavity: from Vacuum to Classical Fields via the Mesoscopic Regime......Page 282
2. Coupling a Single Atom with a Mesoscopic Coherent Field......Page 283
3. The Setup and the Experimental Procedure......Page 285
4. Splitting the Phase of a Mesoscopic Field with a Single Atom......Page 286
5. Atom-Field Entanglement and Schrodinger Cat States of the Field......Page 288
References......Page 289
Vacuum-Field Mechanical Action on a Single Ion J. Eschner, P. Bushev, A. Wilson, F. Schmidt-Kaler, C. Becher, C. Raab and R. Blatt......Page 290
References......Page 293
1. Optical Spectroscopy: from Thin Cell of Dilute Vapour to Nanocell......Page 294
2. Observing Atom-Surface Van Der Waals Interaction at Small Distances......Page 295
3. Dielectric Nanocavities and Resonant Coupling......Page 297
4. Atom Interaction with a Thermally Excited Surface......Page 299
5. Conclusion......Page 300
References......Page 301
Quantum Optics and Quantum Information......Page 302
1. Introduction......Page 304
2. Experimental Setup......Page 305
3. Cirac &: Zoller Gate Operation......Page 306
4. Tomography of Entangled States......Page 308
5. Conclusion......Page 310
References......Page 311
1.1. Original Cirac/Zoller Architecture......Page 312
1.2. Multiplexed Trap Architecture......Page 313
2.2. Moving Ions......Page 316
2.4. Sympathetic Recooling......Page 317
2.5. Robust One and Two-qubit Gates......Page 318
References......Page 320
2. Preparation of Neutral Atom Qubits......Page 321
3. Quantum State Transport......Page 322
References......Page 323
1. Introduction......Page 324
2. Operational Definition of Bipartite Entanglement......Page 325
3. Physical Constraints as Generalized SSRs......Page 326
5. Example: Particle Number SSR......Page 327
6. Example: Ensemble QIP......Page 329
7. Discussion......Page 330
References......Page 331
1. Introduction......Page 332
2. Production of Continuous Variable Entanglement......Page 333
3.2. Noise Distribution Diagrams......Page 334
3.3. The Photon Number Diagram......Page 335
References......Page 339
1. Introduction......Page 341
2. Quadrature Squeezing......Page 342
3. Teleportation of Coherent Light......Page 345
4. Entanglement and Nonclassicality......Page 348
Acknowledgments......Page 349
References......Page 350
Surpassing the Standard Quantum Limit for High Sensitivity Measurements in Optical Images Using Multimode Non Classical Light C. Fabre, S. Gigan, A. Maitre, M. Martinelli, N. Treps, U. Andersen, P.K. Lam, W. Bowen, B. Buckler, N. Grosse and H.-A. Bachor......Page 351
References......Page 358
Novel Applications and New Laser Sources......Page 360
1 Introduction: Single-atom Versus Collective Light Forces......Page 362
2 Self-organization and Spontaneous Symmetry Breaking......Page 363
3 Collective Cooling of the Sample's Center-of-Mass Motion......Page 365
4 Collective force Magnitude and Threshold for Self-Organization......Page 366
References......Page 369
1. Introduction......Page 370
2. Experiment and MOT lonization......Page 371
3. Pauli Blockade......Page 373
4. Additional Condensate Losses......Page 376
References......Page 377
Superluminal and Ultra-Slow Light Propagation in Room-Temperature Solids R.W. Boyd, M.S. Bigelow andN.N. Lepeshkin......Page 379
References......Page 381
Abraham's Force on a Highly Dispersive Medium P.D. Lett and L.J. Wang......Page 382
References......Page 384
Optically Pumped VECSELs for High Resolution Spectroscopy: The New Ti:Sapphire? R.A. Abram, M. Schmid, E. Riis and A.I. Ferguson......Page 386
References:......Page 389
Medical Applications......Page 390
1. Introduction......Page 392
2. Light Scattering Spectroscopy......Page 393
3.1 Reflection QPI......Page 396
3.2 QPI with a Common Path Interferometer......Page 397
References......Page 399
1. Introduction......Page 400
2. The Optically-Pumped Magnetometer (OPM)......Page 401
3. Experimental Setup......Page 403
4. Results......Page 404
References......Page 407
Author Index......Page 408