Laser Communication with Constellation Satellites, UAVs, HAPs and Balloons: Fundamentals and Systems Analysis for Global Connectivity

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents posits a solution to the current limitations in global connectivity by introducing a global laser/optical communication system using constellation satellites, UAVs, HAPs and Balloons. The author outlines how this will help to satisfy the tremendous increasing demand for data exchange and information between end-users worldwide including in remote locations. The book provides both fundamentals and the advanced technology development in establishing worldwide communication and global connectivity using, (I) All-Optical technology, and (ii) Laser/Optical Communication Constellation Satellites (of different types, sizes and at different orbits), UAVs, HAPs (High Altitude Platforms) and Balloons. The book discusses step-by-step methods to develop a satellite backbone in order to interconnect a number of ground nodes clustered within a few SD-WAN (software-defined networking) in a wide area network (WAN) around the world in order to provide a fully-meshed communication network. This book pertains to anyone in optical communications, telecommunications, and system engineers, as well as technical managers in the aerospace industry and the graduate students, and researchers in academia and research laboratory.

  • Proposed a solution to the limitations in global connectivity through a global laser/optical communication system using constellation satellites, UAVs, HAPs and Balloons;
  • Provides both fundamentals and the advanced technology development in establishing global communication connectivity using optical technology and communication constellation satellites;
  • Includes in-depth coverage of the basics of laser/optical communication constellation satellites.


Author(s): Arun K. Majumdar
Publisher: Springer
Year: 2022

Language: English
Pages: 283
City: Cham

Foreword
Preface
Contents
Chapter 1: Basics of Satellite Wireless Communications: Single Satellite and a Constellation of Satellites
1.1 Introduction
1.1.1 Satellite Communications: An Essential Link for a Connected World
1.1.2 Motivation for Writing This Book: Why This Book?
1.2 Fundamental Concepts of Satellite Communication
1.2.1 Basic Metrics for Satellite Communications: Brief Summary
1.2.2 Link Performance Basics
1.2.2.1 Communication Link Between a Satellite and a Ground Station
1.2.2.2 Inter-satellite Links
Establishing a Link
Lead-Ahead (or Point-Ahead) Angle
A Ground Station and a Satellite
Two LEO Satellites
Two GEO Satellites Separated by an Angle
A GEO Satellite and a LEO Satellite with Circular Orbit
1.2.2.3 Doppler Shift for Satellite Communication Systems and Compensation Techniques
1.2.3 Description of Satellite Orbits
1.2.3.1 Small Satellites for Communication: The Next Space Revolution
1.3 Space Laws Relevant to Satellite Communications
1.4 FSO Communication Relevant to a Single (and Multiple) Satellite(s)
1.4.1 Need to Address Demand for High-Speed Communications in the Digital World
1.4.2 Why RF Is Not a Viable Solution Compared to Optical Wireless Communication (OWC) for a Satellite Communication?
1.4.2.1 Comparison Between RF and Laser Footprints for GEO and LEO Orbit Satellites
1.4.3 Single-Satellite All-Optical Concept Technology for Global Broadband Connectivity
1.4.3.1 FSO Communication Systems: Single-Satellite FSO
1.4.3.2 A General Space-Based Laser/Optical Communication Platform Architecture
1.4.3.3 Small Satellites for Potential Laser/Optical Communication
1.4.4 Communications Architecture of Satellites: Introduction to Satellite Constellation Networks
1.5 Summary
References
Chapter 2: Free-Space Optical Propagation Relevant to Integrated Space/Aerial, Terrestrial, and Underwater Links
2.1 Introduction
2.2 Review and Summary of Atmospheric Propagation Parameters’ Results
2.2.1 Atmospheric Channel and Its Role in FSO Communication
2.2.2 Various FSO Transmitting Beam Shapes and Geometries Relevant to Long-Distance Data Transmission
2.2.3 Review and Summary of Intensity Profiles of Various FSO Transmitting Beams
2.2.3.1 Plane Wave
2.2.3.2 Spherical Wave
2.2.3.3 Gaussian Beam Wave
2.2.3.4 Non-diffractive Beam
2.2.4 Recently Studied Other Types of Beams for Long-Distance Applications
2.2.4.1 Bessel Beam
2.2.4.2 Aperture-Truncated Airy (Anti-Airy) Beam
2.2.4.3 Hermite-Gaussian Beam
2.2.4.4 Bessel-Gaussian Beams (BRNO UNIV)
2.2.4.5 Laguerre-Gaussian Beams (BRNO UNIV)
2.2.5 Atmospheric Channel Models for FSO Communication
2.2.5.1 All-Optical Communication Channels for Various Optical Communication Architecture and Links
2.2.5.2 Optical Turbulence Model Descriptions Relevant to FSO Communication
2.2.6 Atmospheric Communication Channels and Effects Applicable to 5G/6G and IoT Applications
2.2.6.1 Free-Space Optical Communication Technologies for 5G Evolution and 6G
2.2.7 Underwater Optical Communications
2.2.7.1 Channel Models of uFSO Systems/Underwater Propagation Characteristics of Optical Wavelength
2.2.7.2 Air-Water Interface Statistical Model (Applicable for Satellite (or Airborne)-to-Underwater or Underwater Terminal Such as Submarine to a Satellite/Airborne Terminal)
Case 1: Reflection Case
Case 2: Transmission Case
2.2.7.3 Adaptive Optics for Underwater Communication: Mitigation of Laser Propagation Through Random Air-Water Interface
2.2.8 Non-isotropic (Non-Kolmogorov) Atmospheric Model: Relevant to FSO
2.2.8.1 Anisotropic Power Spectrum (Scale Dependent)
2.2.8.2 The Atmospheric Channel Characteristics for Anisotropic Turbulence
2.3 Summary
References
Chapter 3: Laser Satellite Communications: Fundamentals, Systems, Technologies, and Applications
3.1 Introduction
3.2 New Network Characteristics
3.2.1 Background
3.2.2 Satellite Orbits: Various Types of Satellites
3.3 Theoretical Background and Analysis
3.3.1 Summary of Essential Results of Optical Propagation Relevant to FSO Communications System Analysis and Design
3.3.1.1 Basic Parameters for Optical Propagation Through Atmospheric Turbulence
3.3.1.2 FSO Communication Parameters
Some Communication System Performance Metrics Relevant to FSO Communication Systems
Uplink and Downlink Wave Models for FSO Communication System Performance
Basic Primary Optical Propagation Parameters for FSO Uplink and Downlink Communications
Mean Irradiance and Beam Spreading Due to Turbulence
Scintillation Index
TIL Laser Beam and Atmospheric Sensing
Scintillation Index (Moderate-to-Strong Turbulence) for a Three-Layer Altitude-Dependent Atmospheric Turbulence
Scintillation Index for Gaussian Beam for Three-Layer Model: Weak Turbulence
Spatial Coherence Radius
RMS Angle of Arrival and Beam Wander
Uplink Scintillation Index and Beam Wander
Laser-Based Free-Space Optical Links
3.4 Laser Satellite Communication Technologies and Link Design Fundamentals
3.4.1 General Space Laser Communication System Technologies
3.4.1.1 Laser Transceiver Design
3.4.1.2 Laser Transmitter System
3.4.1.3 Optical Receiver
3.4.1.4 Pointing, Acquisition, and Tracking (PAT)
3.4.1.5 Laser Satellite Communication Channels: Primary Atmospheric Effects
3.4.2 Laser Satellite Communication System Performance Parameters
3.4.2.1 Received Signal-to-Noise Ratio (SNR)
3.4.2.2 Relationship Between Signal-to-Noise Ratio (SNR) and Bit Error Rate (BER)
3.4.2.3 Downlink Channel
3.4.2.4 Uplink Channel
3.4.3 HAP-to-HAP Optical Link: An Example
3.5 Summary
References
Chapter 4: Optical Laser Links in Space-Based Systems for Global Communications Network Architecture: Space/Aerial, Terrestrial, and Underwater Platforms
4.1 Introduction
4.2 Critical Issues and Challenges of Optical Wireless Communication System
4.2.1 Atmospheric Effects
4.2.1.1 Atmospheric Attenuation of Laser Power
4.2.2 Free-Space Optical (FSO) Communication System Performance: Terrestrial and Satellite/Airborne Platforms
4.2.2.1 Probability Density Function (PDF) Models for Irradiance Fluctuations Relevant to FSO Communication System Performance
4.2.2.2 Received Signal-to-Noise Ratio (SNR) and Bit Error Rate (BER)
4.2.2.3 Relationship Between SNR and BER
4.2.2.4 FSO Communication Signal Temporal Frequency Spectrum
4.2.2.5 The Outage Probability Due to Fading Relevant to FSO Communication Performance
4.2.2.6 Modulated Retroreflector-Based FSO Communication Concept
4.2.3 Underwater Free-Space Optical Communications (uFSO)
4.2.3.1 Designing an Underwater FSO Communication (uFSO) System
4.2.3.2 Fundamental Physics of All-Underwater and Underwater/Above-Water Propagation Channel: Impact on Communications Performance
Underwater Optical Wireless Communications (uOWC)
Underwater Attenuation of Laser Power
Modeling Absorption
Modeling Scattering
Total Attenuation Modeling
Turbulence Effect in Oceanic Water
Random Air-Water Interface Relevant to uOWC
Impulse Response for uOWC
Categories of uOWC Links
4.2.3.3 Underwater/Above-Water Propagation Channel: Impact on Communications Performance
4.2.3.4 Space-Based Detectability, Identification, and Communication of Underwater Object/Submarine Using Laser Communication
A System and Method to Detect Signatures from an Underwater Object/Submarine
4.2.3.5 Demonstration of a Laboratory Water Tank Experimental Setup for Detecting Underwater Object
4.2.4 Example of Laser Communication from a Satellite to Submarine: Impact on Communications Performance
4.2.4.1 Downlink and Uplink Laser Propagation (Air-to-Water-to-Air Channels)
4.2.4.2 Submarine-to-Satellite/Aircraft Laser Communication
4.2.4.3 Satellite/Aircraft-to-Submarine Laser Communication
4.2.4.4 Impact on Free-Space Laser Communication System Performance
4.3 Summary and Discussions
References
Chapter 5: Technology Developments, Research Challenges, and Advances for FSO Communication for Space/Aerial/Terrestrial/Underwater (SATU) Links
5.1 Introduction
5.2 FSO Communication Systems and Scenarios: Laser Communication Technology for Next-Generation Applications and Integration with 5G/6G Systems
5.2.1 Key Challenges for 5G/6G Communications and IoT Solutions
5.3 A New Technique of Deep Neural Network (DNN) for Sensing and Verifying Atmospheric Turbulence Parameters for FSO Communication Channel
5.4 Neural Network Technology for Improving FSO Communication in the Presence of Atmospheric Turbulence and Distortions
5.5 Highly Sensitive Optical Receivers for FSO Communication
5.6 Highly Sensitive FSO Communications Using Chip-Scale LED Transmitters and Single-Photo Receivers for Small Satellite Platforms
5.7 Terabit/s-Level Optical Data Transmission for FSO Communication: Laser Transmitter Development Technologies
5.7.1 1.72 Tbit/s Optical Data Transmission Demonstration
5.7.2 1.28 Tbit/s WDM Transmission for Free-Space Optical Communications
5.7.3 FSO Communication Using All-Optical Retro-modulation at Terabit/s Data Rates
5.8 New Low-Loss Plasmonic Metasurface Materials for FSO Communications Applications
5.9 Ultrahigh-Speed Free-Space Optical (FSO) Communication System Using Violet Laser Diode (VLD)
5.10 Advanced High-Speed Photonic Technologies, Devices, and Photonic-Based Capabilities for Free-Space Optical (FSO) Communication
5.10.1 Optical Devices in Silicon Photonics: Passive and Active Components
5.10.2 Optical Orthogonal Frequency Division Multiplexing (OFDM) Technique for FSO Communication Channel
5.10.2.1 OFDM Advanced Scheme: Magnitude and Wrap-Phase OFDM
5.11 Fast Steering Mirrors for Free-Space Optical Communication
5.12 Advances in High-Power Laser Transmitters Relevant to FSO Communication Systems
5.12.1 High-Power Indium Phosphide Photonic Integrated Circuit Transmitters for Free-Space Optical Communications
5.12.2 Co-Doped Fiber Amplifier for Delivering High-Power Laser Transmitter for FSO Applications
5.12.3 All-Fiber Master Oscillator Power Amplifier (MOPA) for High-Power Laser Transmitter
5.13 Other Related Advances in Free-Space Optical Communication Technologies Applicable to FSO Communication for Space/Aerial/Terrestrial/Underwater (SATU) Links
5.14 Discussions
References
Chapter 6: Constellation of Satellites: Integrated Space/Aerial/Terrestrial/Underwater (SATU) All-Optical Networks for Global Internet Connectivity
6.1 Introduction
6.2 Need to Develop Technology Concept for Establishing High-Speed Global Broadband Internet Connectivity in Remote Places
6.3 Applications of Free-Space Optical (FSO) Communications: Space Optical Information Networks
6.3.1 Basic Architecture of Space Optical Communication Networks
6.3.2 Constellation of Satellites for Laser Space Communications Network
6.3.2.1 Low Earth Orbit (LEO) Satellite Equipped with Laser/Optical Transceiver Network
6.3.2.2 Relay Satellite Communication Network Using Constellation
6.3.2.3 Multilayer Space Communication Architecture
6.3.2.4 OGSs Providing Ground User Terminal Links
6.4 Concept Designs of Laser Satellite Constellations
6.4.1 Satellite Constellation Networks
6.4.2 Constellation of Space Communication Satellites: Some General Description
6.4.3 How Optical Satellite Constellation Can Achieve Global Networking?
6.4.4 How Optical Satellite Constellation (OSC) Can Be Designed with LEO Satellites?
6.5 High-Level Design of Optical Satellite Constellation
6.5.1 Methodology of Defining a Satellite Constellation’s Parameters Relevant to Satellite Laser Communication
6.5.2 Various Satellite Earth Orbits
6.5.2.1 Constellation Design
6.5.3 Constellation Design for LEO Mega-Constellations for Integrated Satellite and Terrestrial Networks
6.5.4 Optical Inter-satellite Links (ISLs): Implementing a High-Speed Communication Link Between Satellites
6.5.4.1 Key Challenges for Implementing a High-Speed Optical ISL Between Satellites
6.6 Optical Ground Stations for Global Coverage Using Laser Satellite Constellations
6.6.1 Satellites Supported by Various Relay Network Configurations
6.6.2 Laser Satellite Constellation Networks
6.6.3 Satellite Constellation Network Physical Topology
6.6.4 Laser Communication Networks for Satellite Constellations
6.6.5 Topology Design Method for Multilayered Optical Satellite Networks
6.7 Summary and Conclusions
References
Chapter 7: Laser-Based Satellite and Inter-satellite Communication Systems: Advanced Technologies and Performance Analysis
7.1 Introduction
7.2 Research Advances in Optical Satellite Networks Relevant to Constellation Designs
7.2.1 Novel Optical Two-Layered Satellite Network
7.2.2 Satellite-Aided Internet Revolution
7.2.3 Nonmechanical Electro-Optical System (EO) Laser Beam Steering Technology with No Moving Parts
7.2.4 Cross-Link Laser Beam Problem on CubeSats: Feasibility of Using the MEMS-Based Fast Steering Mirror
7.2.5 Visible Light Communication (VLC)-Based Inter-satellite Communication System
7.3 Technology Concepts for Inter-spacecraft Omnidirectional Optical Communicator for Future Constellation of Satellites
7.3.1 Advances in Nonmechanical Beam Steering with Polarization Gratings Necessary for Ground/ Satellite-Based Laser Communications
7.3.2 Chip-Based Nonmechanical Beam Steering Technology for Microsatellite Laser Communication Pointing System
7.3.3 Laser/Photodetector Arrays for Optical Communications Application in Constellation of Small Satellites (CubeSats)
7.3.4 Advanced Development of Engineering Breadboard Model for LEO and GEO Constellation-Based Optical Communications at 25 Gbit/s
7.3.5 Advanced Technology of Compact, Optical Components for Small Satellites for Optimized Power Transmission and Reception Future Efficient Optical Data Center: Ultrafast Optical Circuit Switching for Photonic Integrating Platform
7.4 Some Advanced FSO Technologies and Components Relevant to Laser Satellite Communications
7.4.1 High-Power (100 W) Optical Amplifier for WDM in Satellite Communication
7.4.2 Single Optical Amplifier for Both 1064 and 1550 nm Wavelength for Laser Satellite Communications
7.4.3 Optical Circulator for Free-Space Optical Communication
7.4.4 Multiplane Light Conversion Module for Atmospheric Turbulence Mitigation for Satellite-to-Ground Laser Communication
7.4.5 Space Optical Switch Development: New Concepts of Photonic-Based Switch for High Data Throughput up to 1 Tbit/s
7.4.6 Development of Laser Communication Terminals for Satellite and Terrestrial Networks
7.4.7 Modulating Retroreflector (MRR) Technology to Provide High-Capacity Fronthaul/Backhaul Optical Links for UAVs/Drones and Base Stations (BSs)
7.5 Satellite-Based Quantum Communications
7.5.1 Satellite-Based Satellite Quantum Communications: Challenges and Progresses for Implementing QKD over Long Distance Across Free-Space Channels
7.5.1.1 Quantum Key Distribution (QKD)
LEO-to-Ground Link in the Presence of Atmospheric Turbulence and Scattering
CubeSat Quantum Secret Key Rates
Inter-satellite Free-Space Optical Quantum Key Distribution (QKD)
7.5.1.2 Silicon-Photonic Chip to Integrate Detectors for QKD Devices
7.5.1.3 Atmospheric Free-Space Link Strategies for Achieving Potential High-Data-Rate Satellite-Based QKD
7.5.1.4 LEO and GEO Quantum Satellite Constellation for QKD Network Based on Trusted Repeaters
7.5.1.5 Modulating Retroreflector-Based QKD in Turbulent Channel
7.5.1.6 Air-Sea Secure Quantum Communication: Quantum Key Distribution for Satellite-to-Underwater Laser Communication
7.6 Summary and Conclusions
References
Chapter 8: Recent Demonstrations of Laser Satellite Communications: Path Forward for Constellation of Laser Satellite Technology for Global Communication
8.1 Introduction
8.2 Relay-Assisted Free-Space Optical Communication to Extend Coverage Between Satellites: Improvement of Inter-satellite Performance
8.3 Convergence of Aerial, Terrestrial, Underwater, and Satellite Communication Networks
8.4 Demonstrations and Technology Developments for Laser Satellite Communication Relevant to Single and Constellation of Laser Satellites
8.4.1 NICT Demonstrations and Technology Developments
8.4.1.1 NICT Development of a Miniaturized Laser Communication Terminal for Very Small Satellites
8.4.1.2 NICT Designs and Developments of Optical Ground Stations (OGS) for GEO and LEO Applications
8.4.2 NASA’s Satellite-Based Laser Communications Demonstrations
8.4.3 Current Projects of Laser Communications for Satellite Constellations in LEO
8.5 Summary and Conclusions
References
Chapter 9: Summary, Conclusions, and Future Directions
9.1 Introduction
9.2 Summary of this Book’s Major Contributions
9.3 Impact and Issues of Existing and Planned Large Satellite Constellation for Communications
9.3.1 Space Debris and Space Junks
9.3.2 Space Laws Relevant to Deployed Communication Satellites
9.3.3 Space Junks Affecting the Environment
9.3.4 Astronomical Observations Affecting Science Programs
9.3.5 Internet-Beaming Mega-Constellations Affecting Search for Life on Distant Planets
9.3.6 Concerns for Earth-Orbiting Satellites: Radiation Exposure and Atmospheric Satellite Drag
9.4 Conclusions and Future Directions
References
Index