Author(s): Sharon E. Black
Series: Lasers and Electro-Optics Research and Terchnology
Publisher: Nova Science Pub Inc
Year: 2011
Language: English
Pages: 289
Tags: Приборостроение;Оптоэлектроника;
TITLE PAGE......Page 4
CONTENTS......Page 6
PREFACE......Page 8
ABSTRACT......Page 14
1. INTRODUCTION......Page 15
Effects on plasma emission......Page 18
Plasma dynamics......Page 24
Mass removal mechanisms, atomized ablated mass and effects of the matrix target......Page 26
Dependence on ambient gas pressure......Page 30
b) Orthogonal Beams Pre-Ablation Configuration......Page 32
c) Orthogonal Beams Re-Heating Configuration......Page 37
3. NANOSECOND-NANOSECOND PULSES COMBINATION: DISCUSSION ON THE MECHANISMS......Page 39
a) Target Heating Effects......Page 40
Laser supported detonation and laser ablation......Page 42
Laser supported detonation wave and ambient gas pressure......Page 45
Laser absorption in double pulse configuration......Page 46
Mass removal mechanisms in DP schemes......Page 48
4. DOUBLE PULSE WITH SHORT AND ULTRASHORT LASER PULSES: EFFECTS AND MECHANISMS......Page 50
PERSPECTIVES AND FUTURE DEVELOPMENT......Page 52
REFERENCES......Page 53
ABSTRACT......Page 58
INTRODUCTION......Page 59
HUNTER GATHERER MOBILITY IN CIS-BAIKAL......Page 60
KHUZHIR-NUGE XIV CEMETERY......Page 62
TOOTH MINERALIZATION......Page 63
LASER ABLATION OF TEETH......Page 65
MATERIALS AND METHODS......Page 66
RESULTS AND DISCUSSION......Page 69
CONCLUSION......Page 105
REFERENCES......Page 106
ABSTRACT......Page 112
1. INTRODUCTION......Page 113
2.1. Primary Mechanisms of the Material Ejection under Nanosecond Laser Action......Page 117
2.2. Secondary Mechanisms: Plasma Plume Expansion after Nanosecond Laser Pulse......Page 119
2.2.1. Combined LP -DSMC method......Page 121
2.2.2. Results of the combined LP -DSMC calculations......Page 123
3.1.1. Metallic targets......Page 126
3.1.2. Dielectric targets......Page 130
3.2. Secondary Mechanisms: Plasma Plume Expansion after Femtosecond Laser Pulse......Page 134
REFERENCES......Page 135
1. INTRODUCTION......Page 140
2.1. Laser Ablation......Page 142
2.2. Laser Fragmentation......Page 143
3. SI-NCS AND SI-NCS BASED COMPOSITES PRODUCED BY LASER ABLATION IN LIQUID MEDIA......Page 144
4. INDUCED SELF-ASSEMBY & TUNING OF SI-NCS OPTICAL PROPERTIES BY NS LASER FRAGMENTATION IN LIQUID MEDIA......Page 147
5. PHYSICS OF THE NANOSECOND-LASER PROCESSINGS IN LIQUID MEDIA......Page 150
CONCLUSION......Page 151
ACKNOWLEDGMENTS......Page 152
REFERENCES......Page 153
INTRODUCTION......Page 156
MECHANISM OF HO:YAG LASER LITHOTRIPSY......Page 157
FIBERS FOR HO:YAG LASER LITHOTRIPSY......Page 159
SAFETY ASPECT OF HO:YAG LASER LITHOTRIPSY......Page 161
REFERENCES......Page 162
1. INTRODUCTION......Page 166
2. MOLECULAR DYNAMICS SIMULATION......Page 168
4. TWO-TEMPERATURE MODELS......Page 169
5. COMPUTATION OF CRATER GEOMETRY......Page 173
REFERENCES......Page 175
Abstract......Page 176
1. Introduction......Page 177
2.1.Two-temperature Model......Page 178
2.3.1. The space-and time-dependence of electron and lattice temperature of target......Page 180
2.3.2. The numerical solution of electron-phonon relaxation time......Page 181
2.3.4. Effect of fluence of femtosecondl aser on the electron-phonon relaxation time......Page 182
2.3.5. Heat-affected zone per pulseas a function of laser fluence......Page 183
3.1. The Effect of Temperature on Heat Capacity and Thermal Conductivity of the Electrons......Page 184
3.2.Electron Temperature Dependences of the Absorption Coefficient and the Absorptivity......Page 185
3.3. Verification of Absorption Coefficient Analytic Approximation......Page 188
3.4.The Improved Two Temperature Model......Page 189
3.5.1. The Time-dependence of Electron and Lattice Temperature of Target......Page 190
3.5.2. Ablation rate per pulse as a function of laser fluence......Page 191
4.1.1.Physical background......Page 193
4.1.2.The contents of ourmodel......Page 194
4.2.Results and Discussions......Page 195
4.2.1.Determination of the value of a......Page 196
4.2.2. The evolvement of vaporization threshold fluence with laser pulse width......Page 197
References......Page 199
INTRODUCTION......Page 204
General Setup of Laser Ablation in Liquids......Page 205
1. Pulse Duration......Page 206
HISTORICAL REVIEW......Page 208
LASER ABLATION OF AN AG TARGET IN LIQUID ENVIRONMENT......Page 211
LASER ABLATION OF AN AU TARGET IN LIQUID ENVIRONMENT......Page 213
FRAGMENTATION OF NP UNDER LASER EXPOSURE IN LIQUIDS......Page 214
SHAPE-SELECTIVE FRAGMENTATION......Page 215
FORMATION OF THE AU-AG ALLOY UNDER LASER IRRADIATION OF NANOPARTICLES......Page 217
NANOPARTICLES OF CU, BRASS, AND BRONZE......Page 219
INTERNAL SEGREGATION OF BRASS NP......Page 221
SELF-INFLUENCE OF A FEMTOSECOND LASER BEAM......Page 223
Ablation of a Ti Target......Page 224
Ablation of Sn......Page 225
W and Mo NP......Page 226
Modeling of Distribution Function......Page 227
INFLUENCE OF INTENSITY DISTRIBUTION OF THE LASER BEAM ON THE SHAPE OF NANOPARTICLES......Page 228
NANOSTRUCTURING OF SOLIDS UNDER THEIR LASER ABLATION IN LIQUIDS......Page 230
EXCITATION OF HIGH ENERGY LEVELS......Page 233
REFERENCES......Page 235
1. INTRODUCTION......Page 240
2.1. Fundamental Processes in Laser Ablation In Liquid......Page 241
2.2. Synthesis of Nanocrystals Using Laser Ablation in Liquid......Page 247
3.1. PLIIR Apparatus......Page 249
3.2. Thermodynamic and Kinetic Factors of PLIIR......Page 250
4.1. Synthesis of Nanodiamonds by PLIIR......Page 253
4.2. Thermodynamic Nucleation of Diamonds upon PLIIR......Page 257
4.3. Graphite-Diamond Phase Transition upon PLIIR......Page 261
4.4. Structural Transformation of Diamonds upon PLIIR......Page 265
4.5. Stability of Nanodiamonds Synthesized by PLIIR......Page 268
CONCLUSION......Page 271
REFERENCES......Page 272
INDEX......Page 280