Large Deviations Techniques and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The theory of large deviations deals with the evaluation, for a family of probability measures parameterized by a real valued variable, of the probabilities of events which decay exponentially in the parameter. Originally developed in the context of statistical mechanics and of (random) dynamical systems, it proved to be a powerful tool in the analysis of systems where the combined effects of random perturbations lead to a behavior significantly different from the noiseless case. The volume complements the central elements of this theory with selected applications in communication and control systems, bio-molecular sequence analysis, hypothesis testing problems in statistics, and the Gibbs conditioning principle in statistical mechanics.

Starting with the definition of the large deviation principle (LDP), the authors provide an overview of large deviation theorems in ${{\rm I\!R}}^d$ followed by their application. In a more abstract setup where the underlying variables take values in a topological space, the authors provide a collection of methods aimed at establishing the LDP, such as transformations of the LDP, relations between the LDP and Laplace's method for the evaluation for exponential integrals, properties of the LDP in topological vector spaces, and the behavior of the LDP under projective limits. They then turn to the study of the LDP for the sample paths of certain stochastic processes and the application of such LDP's to the problem of the exit of randomly perturbed solutions of differential equations from the domain of attraction of stable equilibria. They conclude with the LDP for the empirical measure of (discrete time) random processes: Sanov's theorem for the empirical measure of an i.i.d. sample, its extensions to Markov processes and mixing sequences and their application.

The present soft cover edition is a corrected printing of the 1998 edition.

Amir Dembo is a Professor of Mathematics and of Statistics at Stanford University. Ofer Zeitouni is a Professor of Mathematics at the Weizmann Institute of Science and at the University of Minnesota.

Author(s): Amir Dembo, Ofer Zeitouni (auth.)
Series: Stochastic Modelling and Applied Probability 38
Edition: 2
Publisher: Springer-Verlag Berlin Heidelberg
Year: 2010

Language: English
Pages: 396
Tags: Systems Theory, Control; Probability Theory and Stochastic Processes

Front Matter....Pages I-XVI
Introduction....Pages 1-10
LDP for Finite Dimensional Spaces....Pages 11-70
Applications-The Finite Dimensional Case....Pages 71-114
General Principles....Pages 115-174
Sample Path Large Deviations....Pages 175-250
The LDP for Abstract Empirical Measures....Pages 251-310
Applications of Empirical Measures LDP....Pages 311-339
Back Matter....Pages 341-398