Knots

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is an introduction to classical knot theory. Topics covered include: different constructions of knots, knot diagrams, knot groups, fibred knots, characterisation of torus knots, prime decomposition of knots, cyclic coverings and Alexander polynomials and modules together with the free differential calculus, braids, branched coverings and knots, Montesinos links, representations of knot groups, surgery of 3-manifolds and knots.

Knot theory has expanded enormously since the first edition of this book published in 1985. A special feature of this second completely revised and extended edition is the introduction to two new constructions of knot invariants, namely the Jones and homfly polynomials and the Vassiliev invariants.

The book contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory.

Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known. The text is accessible to advanced undergraduate and graduate students in mathematics.

Author(s): Gerhard Burde, Heiner Zieschang
Series: de Gruyter Studies in Mathematics
Edition: 2 Revised
Publisher: Walter de Gruyter
Year: 2002

Language: English
Pages: 572