Kinetic Theory of Granular Gases

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Kinetic Theory of granular Gases provides an introduction to the rapidly developing theory of dissipative gas dynamics as it has been developed mainly during the past decade. The book is aimed at readers from the advanced undergraduate level onwards and leads up to the present state of research. The text is self-contained, in the sense that no mathematical or physical knowledge is required that goes beyond standard undergraduate physics courses. The material is adequate for a one-semester course and contains chapter summaries as well as exercises with detailed solutions. Special emphasis is put on a microscopically consistent description of pairwise particle collisions which leads to an impact-velocity dependent coefficient of restitution. The description of the many-particle system, based on the Boltzmann equation, starts with the derivation of the velocity distribution function, followed by the investigation of self-diffusion and Brownian motion. Using hydrodynamical methods, transport processes and self-organized structure formulation are studies. An appendix gives a brief introduction to event-driven molecular dynamics. A second appendix describes a novel mathematical technique for the derivation of the kinetic properties which allows for the application of computer algebra. The book is accompanied by a web page where the molecular dynamics program as well as the computer-algebra programs are provided.

Author(s): Nikolai V. Brilliantov, Thorsten Poschel
Series: Oxford Graduate Texts
Edition: illustrated edition
Publisher: Oxford University Press
Year: 2004

Language: English
Pages: 339
City: Oxford; New York
Tags: Механика;Механика жидкостей и газов;Гидрогазодинамика;