Jordan theory has developed rapidly in the last three decades, but very few books describe its diverse applications. Here, the author discusses some recent advances of Jordan theory in differential geometry, complex and functional analysis, with the aid of numerous examples and concise historical notes. These include: the connection between Jordan and Lie theory via the Tits-Kantor-Koecher construction of Lie algebras; a Jordan algebraic approach to infinite dimensional symmetric manifolds including Riemannian symmetric spaces; the one-to-one correspondence between bounded symmetric domains and JB*-triples; and applications of Jordan methods in complex function theory. The basic structures and some functional analytic properties of JB*-triples are also discussed. The book is a convenient reference for experts in complex geometry or functional analysis, as well as an introduction to these areas for beginning researchers. The recent applications of Jordan theory discussed in the book should also appeal to algebraists.
Author(s): Cho-Ho Chu
Series: Cambridge Tracts in Mathematics
Publisher: Cambridge University Press
Year: 2012
Language: English
Pages: 272
Tags: Математика;Математическая физика;
Cover......Page 1
CAMBRIDGE TRACTS IN MATHEMATICS......Page 2
Title......Page 4
Copyright......Page 5
Dedication......Page 6
Contents......Page 8
Preface......Page 10
1.1 Jordan algebras......Page 12
1.2 Jordan triple systems......Page 24
1.3 Lie algebras and the Tits–Kantor–Koecher construction......Page 50
1.4 Matrix Lie groups......Page 61
Notes......Page 72
2.1 Banach manifolds and Lie groups......Page 73
2.2 Riemannian manifolds......Page 93
2.3 Jordan algebras and Riemannian symmetric spaces......Page 112
2.4 Jordan triples and Riemannian symmetric spaces......Page 132
2.5 Jordan triples and symmetric domains......Page 155
Notes......Page 180
3.1 Banach spaces......Page 182
3.2 Holomorphic mappings......Page 194
3.3 Contractive projections on JB*-triples......Page 213
3.4 Isometries between JB-triples......Page 228
3.5 Hilbert spaces......Page 238
Notes......Page 259
Bibliography......Page 262
Index......Page 268