Jordan Decompositions of Generalized Vector Measures

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This ``research note'' looks at the Jordan decomposition of vector measures from a Boolean ring into a Riesz space or Banach lattice. The treatment is relatively self-contained. The author uses a common approach to the Jordan decomposition of vector measures and linear operators, allowing a smoother application of the general results to order-bounded vector measures and linear operators in a Riesz space. It also presents the first unified treatment of the Jordan decomposition on norm-bounded vector measures and linear operators in a Banach lattice. Incidentally, these general results are also applicable to the problem of developing a satisfactory measure theory on systems of fuzzy sets. In general, this research note demonstrates that additive functions on a commutative clan provide a useful tool for unifying and extending parts of measure and operator theory.

Author(s): K.D. Schmidt
Series: Pitman Research Notes in Mathematics
Edition: 1
Publisher: Wiley
Year: 1989

Language: English
Pages: 142