Author(s): Steve Granick; Shan Jiang; Hans-Jorg Schneider; Mohsen Shahinpoor; Zhenzhong Yang
Publisher: Royal Society of Chemistry
Year: 2012
Language: English
Pages: 313
City: London
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Нанобиотехнология;
Contents......Page 16
1.1 Introduction......Page 22
1.2 Janus Particles via Direct MacromolecularEngineering......Page 24
1.3 Janus Particles via Direct Self-assembly andTransformations in Solution......Page 30
1.4 Janus Particles via Transformation ofSelf-assembled Polymer Bulk Structures......Page 36
1.5 Self-assembly Properties of Polymer-based JanusParticles of Different Dimensionality......Page 40
1.6 Application as Structured Particulate Surfactants......Page 44
1.7 Summary and Outlook......Page 46
References......Page 47
2.1 Introduction......Page 50
2.2 Synthesis......Page 51
2.2.1 DBNPs Containing Noble Metal and Transition MetalOxide NPs......Page 53
2.2.2 DBNPs Containing Semiconductor NPs......Page 57
2.2.3 DBNPs Containing More Than Two Particles......Page 59
2.3.1 DBNPs as Heterogeneous Catalysts......Page 61
2.3.2 DBNPs as a Multifunctional Platform for BiomedicalApplications......Page 62
2.4 Conclusion and Future Directions......Page 69
References......Page 71
3.1 Introduction......Page 75
3.2 Compartmentalization of Nano- and Microparticlesvia Electrohydrodynamic Co-jetting......Page 76
3.3 Microsectioning of Compartmentalized Fibers......Page 84
3.4 Hybrid Janus Particles......Page 85
3.5 Selective Surface Modification and Directional Self-assembly......Page 87
3.6 Summary and Outlook......Page 89
References......Page 92
4.1 Introduction......Page 95
4.2 Synthesis at a Pickering Emulsion Interface......Page 96
4.3 Synthesis in a Liquid Droplet......Page 100
4.4 Synthesis upon Preformed Particles......Page 104
4.5 Summary and Outlook......Page 108
References......Page 109
5.1 Introduction......Page 111
5.2 PRINT Technique......Page 112
5.3.1 Stepwise Vertical Mold Filling......Page 114
5.3.2 Horizontal Stepwise Mold Filling......Page 116
5.4.1 Surface-modified Particles by Chemical Grafting......Page 121
5.4.2 Surface-functionalized Particles by Metal Deposition......Page 122
5.5 Self-assembly of Janus PRINT Particles......Page 123
5.6 Conclusion and Future Perspectives......Page 126
References......Page 127
6.1 Introduction......Page 129
6.2 The Kern–Frenkel Model......Page 131
6.4 Monte Carlo Simulations......Page 133
6.4.1 Canonical NVT and NPT Methods......Page 134
6.4.3 Grand-canonical Ensemble mVT......Page 135
6.5.1 General Scheme......Page 136
6.5.2 Iterative Procedure......Page 138
6.5.3 Thermodynamics......Page 141
6.6 Barker–Henderson Perturbation Theory......Page 142
6.8.1 Fluid–Fluid Coexistence Curves from the RHNC IntegralEquation......Page 145
6.8.2 The Janus Limit......Page 148
6.8.4 Evaluation of the Fluid–Fluid Coexistence Curves fromThermodynamic Perturbation Theory......Page 150
6.8.5 Fluid–Solid Coexistence......Page 152
6.8.6 Self-assembly in a Predefined Kagome Lattice......Page 153
6.9 Conclusions and Future Perspectives......Page 155
References......Page 156
7.1 Introduction......Page 159
7.2.1 Dipolar Janus Particles......Page 162
7.2.2 Amphiphilic Janus Particles......Page 166
7.3.1 Dipolar Janus Particles......Page 168
7.3.2 Amphiphilic Janus Particles......Page 169
7.4 Experiments on and Simulations of Janus Self-assembly......Page 170
7.4.1 Dipolar Janus Particles......Page 171
7.4.2 Amphiphilic Janus Particles......Page 175
7.5 Off-balance Amphiphilic Janus Particles......Page 182
7.6 Conclusion......Page 185
References......Page 187
8.1 Introduction......Page 189
8.1.1 Convective Flow and Uniaxial Electric/ Magnetic Fields......Page 190
8.1.2 Biaxial Combinations of Electric and Magnetic Fields......Page 195
8.2.1 Materials......Page 197
8.2.2 Janus Particle Preparation......Page 198
8.3 Field Assembly of Janus Particles......Page 199
8.3.1 Janus Particles in Convective Flow Fields......Page 200
8.3.2 Janus Particles in Electric Fields......Page 204
8.3.3 Janus Particles in Magnetic Fields......Page 212
8.3.4 Janus Particles in Biaxial Fields......Page 216
8.4 Future Outlook......Page 218
References......Page 220
9.1 Introduction......Page 225
9.2.1 Conformational Changes Induced by Environmental Changes......Page 227
9.2.2 Motions Fueled by Strand Displacement......Page 229
9.2.3 Autonomous Motion Powered by Enzymatic Activity......Page 231
9.3 DNA-enabled Self-assembly of Inorganic/Organic Nanoparticles......Page 232
9.3.1 Properties of DNA-modified Gold Nanoparticles......Page 233
9.3.2 Directed Self-assembly of DNA-modified Gold Nanoparticles......Page 235
9.4 Micro- to Macro-engineering by Self-assembly......Page 238
References......Page 241
10.1 Introduction......Page 244
10.2.1 Spatial Localization......Page 246
10.2.2 Angular Localization......Page 248
10.2.3 Experimental Validation......Page 251
10.3 Optically Overlapping Particle Localization......Page 253
10.3.1 Image Preprocessing......Page 256
10.3.3 Separation of Overlapping Janus Spheres......Page 257
10.4 Probing Translational and Rotational Dynamics......Page 260
References......Page 263
11.1 Introduction......Page 265
11.2 Janus Particles at a Planar Interface......Page 267
11.3 Janus Balance......Page 268
11.3.1 Contact Angle of Janus Particles at an Interface......Page 269
11.3.2 Adsorption Energy......Page 270
11.3.3 Quantification of Janus Balance......Page 271
11.3.4 An Example......Page 272
11.3.5 Outlook and Potential Implications......Page 273
11.4.1 An Example......Page 274
Acknowledgement......Page 276
References......Page 277
12.1 Overview......Page 278
12.2 Nanoparticle Design to Overcome Barriers to Drug Delivery......Page 279
12.3 Examples of Nanoparticle Systems: Liposomes, Micelles and Dendrimers......Page 281
12.4.1 Particles with Anisotropic, Janus or Patchy Surfaces......Page 283
12.4.3 Anisotropic Geometries......Page 288
12.5 Conclusion......Page 292
References......Page 293
Subject Index......Page 300