Introduction to Topology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Highly regarded for its exceptional clarity, imaginative and instructive exercises, and fine writing style, this concise book offers an ideal introduction to the fundamentals of topology. Originally conceived as a text for a one-semester course, it is directed to undergraduate students whose studies of calculus sequence have included definitions and proofs of theorems. The book's principal aim is to provide a simple, thorough survey of elementary topics in the study of collections of objects, or sets, that possess a mathematical structure. The author begins with an informal discussion of set theory in Chapter 1, reserving coverage of countability for Chapter 5, where it appears in the context of compactness. In the second chapter Professor Mendelson discusses metric spaces, paying particular attention to various distance functions which may be defined on Euclidean n-space and which lead to the ordinary topology. Chapter 3 takes up the concept of topological space, presenting it as a generalization of the concept of a metric space. Chapters 4 and 5 are devoted to a discussion of the two most important topological properties: connectedness and compactness. Throughout the text, Dr. Mendelson, a former Professor of Mathematics at Smith College, has included many challenging and stimulating exercises to help students develop a solid grasp of the material presented.

Author(s): Bert Mendelson
Edition: 3
Publisher: Dover Publications
Year: 1990

Language: English
Pages: 224
City: New York, NY
Tags: Topology

Front
Copyright
Contents
Preface to the Third Edition
Chapter 1 Theory of Sets
Chapter 2 Metric Spaces
Chapter 3 Topological Spaces
Chapter 4 Connectedness
Chapter 5 Compactness
Bibliography
Index
Back