An Updated Edition of the Classic TextPolymers constitute the basis for the plastics, rubber, adhesives, fiber, and coating industries. The Fourth Edition of Introduction to Physical Polymer Science acknowledges the industrial success of polymers and the advancements made in the field while continuing to deliver the comprehensive introduction to polymer science that made its predecessors classic texts.The Fourth Edition continues its coverage of amorphous and crystalline materials, glass transitions, rubber elasticity, and mechanical behavior, and offers updated discussions of polymer blends, composites, and interfaces, as well as such basics as molecular weight determination. Thus, interrelationships among molecular structure, morphology, and mechanical behavior of polymers continue to provide much of the value of the book.Newly introduced topics include:* Nanocomposites, including carbon nanotubes and exfoliated montmorillonite clays* The structure, motions, and functions of DNA and proteins, as well as the interfaces of polymeric biomaterials with living organisms* The glass transition behavior of nano-thin plastic filmsIn addition, new sections have been included on fire retardancy, friction and wear, optical tweezers, and more.Introduction to Physical Polymer Science, Fourth Edition provides both an essential introduction to the field as well as an entry point to the latest research and developments in polymer science and engineering, making it an indispensable text for chemistry, chemical engineering, materials science and engineering, and polymer science and engineering students and professionals.
Author(s): L. H. Sperling
Edition: 4
Publisher: Wiley-Interscience
Year: 2005
Language: English
Pages: 866
Cover Page......Page 1
Title Page......Page 2
Copyright © 2006 by John Wiley & Sons, Inc.......Page 3
2 Chain Structure and Configuration 29......Page 5
4 Concentrated Solutions, Phase Separation Behavior, and Diffusion 145......Page 6
6 The Crystalline State 239......Page 7
9 Cross-linked Polymers and Rubber Elasticity 427......Page 8
11 Mechanical Behavior of Polymers 557......Page 9
13 Multicomponent Polymeric Materials 687......Page 10
Index 827......Page 11
PREFACE TO THE FOURTH EDITION......Page 12
PREFACE TO THE FIRST EDITION......Page 14
English Alphabet......Page 16
Greek Alphabet......Page 24
1 INTRODUCTION TO POLYMER SCIENCE......Page 28
1.1 FROM LITTLE MOLECULES TO BIG MOLECULES......Page 29
1.2.1 Effect on Tensile Strength......Page 31
1.2.2 Molecular Weight Averages......Page 33
1.3 MAJOR POLYMER TRANSITIONS......Page 35
1.4.1 Chain Polymerization......Page 37
1.4.2 Step Polymerization......Page 41
1.5 CROSS-LINKING, PLASTICIZERS, AND FILLERS......Page 45
1.6 THE MACROMOLECULAR HYPOTHESIS......Page 46
1.7 HISTORICAL DEVELOPMENT OF INDUSTRIAL POLYMERS......Page 47
1.8 MOLECULAR ENGINEERING......Page 48
GENERAL READING......Page 49
WEB SITES......Page 51
STUDY PROBLEMS......Page 52
APPENDIX 1.1 NAMES FOR POLYMERS......Page 53
REFERENCE......Page 55
2 CHAIN STRUCTURE AND CONFIGURATION......Page 56
2.1.2 Trans†–Gauche Conformations......Page 57
2.2.1 Chemical Methods of Determining Microstructure......Page 58
2.2.2 General Physical Methods......Page 59
2.2.3 Infrared and Raman Spectroscopic Characterization......Page 60
2.2.4 Nuclear Magnetic Resonance Methods......Page 61
2.3.1 Chiral Centers......Page 63
2.3.2 Tacticity in Polymers......Page 64
2.3.3 Meso- and Racemic Placements......Page 66
2.3.4 Proton Spectra by NMR......Page 67
2.4.2 Geometric Isomerism......Page 69
2.4.4 Infrared and Raman Spectroscopic Characterization......Page 70
2.5.1 Unspecified Copolymers......Page 72
2.5.2 Statistical Copolymers......Page 73
2.6.1 Dilute Solution Studies: Mer Distribution......Page 74
2.6.2 High-Resolution NMR in the Solid State......Page 76
2.7.2 Graft Copolymers......Page 78
2.7.6 Separation and Identification of Multicomponent Polymers......Page 81
2.8 CONFORMATIONAL STATES IN POLYMERS......Page 82
2.9 ANALYSIS OF POLYMERS DURING MECHANICAL STRAIN......Page 83
2.10 PHOTOPHYSICS OF POLYMERS......Page 85
2.10.1 Quenching Phenomena......Page 86
2.10.2 Excimer Formation......Page 87
2.10.3 Experimental Studies......Page 88
REFERENCES......Page 90
STUDY PROBLEMS......Page 92
Proteins......Page 94
Cellulose and Starch......Page 95
Ditactic Polymers......Page 96
REFERENCE......Page 97
3.1.1 Polymer Size and Shape......Page 98
3.2 THE SOLUBILITY PARAMETER......Page 100
3.2.1 Solubility Parameter Tables......Page 101
3.2.2 Experimental Determination......Page 103
3.2.3 Theoretical Calculation: An Example......Page 104
3.3.1 Types of Solutions......Page 106
3.3.2 Dilute Solutions......Page 109
3.3.4 A Worked Example for the Free Energy of Mixing......Page 111
3.4 MOLECULAR WEIGHT AVERAGES......Page 112
3.5.2 Colligative Properties......Page 114
3.5.3 Osmotic Pressure......Page 115
3.6 WEIGHT-AVERAGE MOLECULAR WEIGHTS AND RADII OF GYRATION......Page 118
3.6.1 Scattering Theory and Formulations......Page 119
3.6.2 The Appropriate Angular Range......Page 122
3.6.4 Polymer Chain Dimensions and Random Coils......Page 125
3.6.6 Dynamic Light-Scattering......Page 128
3.7.2 Thermodynamics and Kinetics of Polymerization......Page 130
3.7.3 Molecular Weight Distributions......Page 134
3.7.4 Gelation and Network Formation......Page 135
3.8 INTRINSIC VISCOSITY......Page 137
3.8.1 Definition of Terms......Page 138
3.8.2 The Equivalent Sphere Model......Page 139
3.8.3 The Mark–Houwink–Sakurada Relationship......Page 140
3.8.4 Intrinsic Viscosity Experiments......Page 142
3.9 GEL PERMEATION CHROMATOGRAPHY......Page 144
3.9.1 Theory of Gel Permeation Chromatography......Page 146
3.9.2 Utilization of Distribution Coefficients in GPC and HPLC......Page 147
3.9.3 Types of Chromatography......Page 148
3.9.4 GPC Instrumentation......Page 149
3.9.5 Calibration......Page 151
3.9.6 Selected Current Research Problems......Page 152
3.9.7 The Universal Calibration......Page 154
3.9.8 Properties of Cyclic Polymers......Page 155
3.10 MASS SPECTROMETRY......Page 157
3.10.1 High Molecular Weight Studies......Page 158
3.10.2 Advances Using MALDI Techniques......Page 159
3.11 INSTRUMENTATION FOR MOLECULAR WEIGHT DETERMINATION......Page 161
3.12 SOLUTION THERMODYNAMICS AND MOLECULAR WEIGHTS......Page 162
REFERENCES......Page 163
GENERAL READING......Page 166
STUDY PROBLEMS......Page 167
APPENDIX 3.1 CALIBRATION AND APPLICATION OF LIGHT-SCATTERING LIGHTSCATTERING INSTRUMENTATION FOR THE CASE WHERE P(q) = 1......Page 169
4.1.1 Motor Oil Viscosity Example......Page 171
4.1.2 Polymer–Solvent Systems......Page 174
4.2 REGIONS OF THE POLYMER–SOLVENT PHASE DIAGRAM......Page 176
4.3 POLYMER–POLYMER PHASE SEPARATION......Page 179
4.3.1 Phase Diagrams......Page 180
4.3.3 An Example Calculation: Molecular Weight Miscibility Limit......Page 182
4.3.4 Equation of State Theories......Page 183
4.3.5 Kinetics of Phase Separation......Page 185
4.3.6 Miscibility in Statistical Copolymer Blends......Page 189
4.3.7 Polymer Blend Characterization......Page 191
4.3.9 Block Copolymers......Page 194
4.4 DIFFUSION AND PERMEABILITY IN POLYMERS......Page 198
4.4.2 Fick’s Laws......Page 199
4.4.5 Effect of Permeant Size......Page 201
4.4.6 Permselectivity of Polymeric Membranes and Separations......Page 204
4.4.8 Fickian and Non-Fickian Diffusion......Page 206
4.4.9 Controlled Drug Delivery via Diffusion......Page 207
4.5 LATEXES AND SUSPENSIONS......Page 210
4.5.2 Colloidal Stability and Film Formation......Page 211
REFERENCES......Page 212
STUDY PROBLEMS......Page 216
The Dilute to Semidilute Transition......Page 218
Semidilute Regime Scaling Laws......Page 219
REFERENCES......Page 220
5 THE AMORPHOUS STATE......Page 222
5.1.2 Possible Residual Order in Amorphous Polymers?......Page 223
5.2.1 Short-Range Interactions in Amorphous Polymers......Page 224
5.2.2 Long-Range Interactions in Amorphous Polymers......Page 228
5.3.1 Models and Ideas......Page 236
5.3.2 The Random Coil......Page 238
5.3.3 Models of Polymer Chains in the Bulk Amorphous State......Page 239
5.4.1 The Rouse–Bueche Theory......Page 242
5.4.2 Reptation and Chain Motion......Page 244
5.4.3 Nonlinear Chains......Page 247
5.4.4 Experimental Methods of Determining Diffusion Coefficients......Page 248
REFERENCES......Page 252
STUDY PROBLEMS......Page 255
Early Ideas of Polymer Chain Shape......Page 257
The Random Coil......Page 258
REFERENCES......Page 260
APPENDIX 5.2 CALCULATIONS USING THE DIFFUSION COEFFICIENT......Page 261
APPENDIX 5.3 NOBEL PRIZE WINNERS IN POLYMER SCIENCE AND ENGINEERING......Page 262
REFERENCES......Page 263
6.1 GENERAL CONSIDERATIONS......Page 264
6.1.1 Historical Aspects......Page 265
6.1.2 Melting Phenomena......Page 266
6.1.3 Example Calculation of Percent Crystallinity......Page 269
6.2.1 A Review of Crystal Structure......Page 270
6.2.2 X-Ray Methods......Page 271
6.2.4 Infrared Absorption......Page 272
6.3 THE UNIT CELL OF CRYSTALLINE POLYMERS......Page 273
6.3.2 Other Polyolefin Polymers......Page 274
6.3.3 Polar Polymers and Hydrogen Bonding......Page 277
6.3.5 Principles of Crystal Structure Determination......Page 278
6.4.1 The Fringed Micelle Model......Page 281
6.4.2 Polymer Single Crystals......Page 283
6.5.1 Spherulitic Morphology......Page 285
6.5.2 Mechanism of Spherulite Formation......Page 290
6.5.3 Spherulites in Polymer Blends and Block Copolymers......Page 291
6.5.4 Percent Crystallinity in Polymers......Page 294
6.6.1 Experimental Observations of Crystallization Kinetics......Page 296
6.6.2 Theories of Crystallization Kinetics......Page 299
6.6.3 Analysis of the Three Crystallization Regimes......Page 309
6.6.4 The Entropic Barrier Theory......Page 313
6.7 THE REENTRY PROBLEM IN LAMELLAE......Page 315
6.7.2 Carbon-13 NMR......Page 316
6.7.3 Small-Angle Neutron Scattering......Page 317
6.7.4 Extended Chain Crystals......Page 322
6.8 THERMODYNAMICS OF FUSION......Page 324
6.8.1 Theory of Melting Point Depression......Page 325
6.8.2 Example Calculation of Melting Point Depression......Page 326
6.8.4 Entropy of Melting......Page 327
6.8.5 The Hoffman–Weeks Equilibrium Melting Temperature......Page 329
6.9 EFFECT OF CHEMICAL STRUCTURE ON THE MELTING TEMPERATURE......Page 330
6.10 FIBER FORMATION AND STRUCTURE......Page 332
6.10.1 X-Ray Fiber Diagrams......Page 333
6.10.2 Natural Fibers......Page 334
6.11 THE HIERARCHICAL STRUCTURE OF POLYMERIC MATERIALS......Page 336
6.12 HOW DO YOU KNOW IT’S A POLYMER?......Page 337
REFERENCES......Page 339
STUDY PROBLEMS......Page 345
7.1 DEFINITION OF A LIQUID CRYSTAL......Page 349
7.3.1 Mesophase Topologies......Page 350
7.3.2 Phase Diagrams......Page 351
7.3.3 First-Order Transitions......Page 352
7.4.1 Lyotropic Liquid Crystalline Chemical Structures......Page 355
7.4.2 Thermotropic Liquid Crystalline Chemical Structures......Page 358
7.4.3 Side-Chain Liquid Crystalline Chemical Structures......Page 360
7.5.1 Historical Aspects......Page 362
7.5.2 Importance of the c1 Parameter......Page 364
7.6 MESOPHASE IDENTIFICATION IN THERMOTROPIC POLYMERS......Page 365
7.7.1 Viscosity of Lyotropic Solutions......Page 366
7.7.2 Molecular Orientation......Page 367
7.8.1 Molecular Conformation......Page 368
7.9 BASIC REQUIREMENTS FOR LIQUID CRYSTAL FORMATION......Page 369
REFERENCES......Page 370
GENERAL READING......Page 371
STUDY PROBLEMS......Page 372
8 GLASS–RUBBER TRANSITION BEHAVIOR......Page 373
8.1.1 Modulus......Page 374
8.1.2 Newton’s Law......Page 375
8.1.3 Poisson’s Ratio......Page 376
8.1.5 Relationships among E, G, B, and n......Page 377
8.1.7 Numerical Values for E......Page 378
8.2 FIVE REGIONS OF VISCOELASTIC BEHAVIOR......Page 379
8.2.1 The Glassy Region......Page 380
8.2.3 The Rubbery Plateau Region......Page 382
8.2.5 The Liquid Flow Region......Page 384
8.2.8 Melt Viscosity Relationships near Tg......Page 385
8.2.9 Dynamic Mechanical Behavior through the Five Regions......Page 386
8.3.1 Dilatometry Studies......Page 390
8.3.2 Thermal Methods......Page 392
8.3.3 Mechanical Methods......Page 393
8.3.4 Dielectric and Magnetic Methods......Page 396
8.3.5 A Comparison of the Methods......Page 397
8.3.6 The Cole–Cole Plot......Page 398
8.4.1 The Schatzki Crankshaft Mechanism......Page 399
8.4.2 The Tll Transition......Page 400
8.5 TIME AND FREQUENCY EFFECTS ON RELAXATION PROCESSES......Page 401
8.5.1 Time Dependence in Dilatometric Studies......Page 402
8.5.2 Time Dependence in Mechanical Relaxation Studies......Page 403
8.5.3 Frequency Effects in Dynamic Experiments......Page 404
8.6.1 The Free-Volume Theory......Page 405
8.6.2 The Kinetic Theory of the Glass Transition......Page 414
8.6.3 Thermodynamic Theory of Tg......Page 416
8.7.1 Linear Polymers......Page 421
8.7.2 Effect of Tg on Polymerization......Page 422
8.8 EFFECT OF COPOLYMERIZATION ON Tg......Page 423
8.8.1 One-Phase Systems......Page 424
8.8.2 Two-Phase Systems......Page 427
8.9.1 The Glass Transition of Polyethylene......Page 428
8.9.2 The Nylon Family Glass Transition......Page 429
8.9.4 Heat Distortion Temperature......Page 430
8.10.2 Effect of Tacticity on Tg......Page 432
8.11 EFFECT OF PRESSURE ON Tg......Page 434
8.12 DAMPING AND DYNAMIC MECHANICAL BEHAVIOR......Page 436
REFERENCES......Page 439
STUDY PROBLEMS......Page 444
APPENDIX 8.1 MOLECULAR MOTION NEAR THE GLASS TRANSITION......Page 447
REFERENCE......Page 449
9.1.1 The Sol–Gel Transition......Page 450
9.1.2 Micronetworks......Page 452
9.2.1 Early Developments......Page 453
9.2.2 Modern Developments......Page 454
9.3 RUBBER NETWORK STRUCTURE......Page 455
9.4 RUBBER ELASTICITY CONCEPTS......Page 457
9.5 THERMODYNAMIC EQUATION OF STATE......Page 460
9.6 EQUATION OF STATE FOR GASES......Page 462
9.7.1 The Equation of State for a Single Chain......Page 465
9.7.2 The Equation of State for a Macroscopic Network......Page 468
9.7.3 Some Example Calculations......Page 471
9.8.2 The Carnot Cycle for an Elastomer......Page 473
9.8.3 Work and Efficiency......Page 474
9.9.1 The Mooney–Rivlin Equation......Page 476
9.9.2 Generalized Strain–Energy Functions......Page 478
9.10.1 The Inverse Langevin Function......Page 482
9.10.2 Cross-link Functionality......Page 483
9.10.4 Volume Changes and Swelling......Page 484
9.10.5 Physical Cross-links......Page 485
9.10.6 Small-Angle Neutron Scattering......Page 488
9.11.1 Thermoelastic Behavior of Rubber......Page 492
9.11.2 Experimental Values......Page 493
9.12.1 Causes of Swelling......Page 495
9.13 GELATION PHENOMENA IN POLYMERS......Page 496
9.13.1 Gelation in Solution......Page 497
9.13.2 Gelation during Polymerization......Page 498
9.13.3 Hydrogels......Page 500
9.14 GELS AND GELATION......Page 501
9.15 EFFECT OF STRAIN ON THE MELTING TEMPERATURE......Page 502
9.16 ELASTOMERS IN CURRENT USE......Page 503
9.16.1 Classes of Elastomers......Page 504
9.16.2 Reinforcing Fillers and Other Additives......Page 508
9.17 SUMMARY OF RUBBER ELASTICITY BEHAVIOR......Page 511
REFERENCES......Page 512
GENERAL READING......Page 517
STUDY PROBLEMS......Page 518
Theory......Page 520
Experimental......Page 521
Results......Page 522
Discussion......Page 523
APPENDIX 9.2 ELASTIC BEHAVIOR OF A RUBBER BAND†......Page 524
Expected Results......Page 526
Extra Credit......Page 527
REFERENCES......Page 528
10.1 STRESS RELAXATION AND CREEP......Page 529
10.1.1 Molecular Bases of Stress Relaxation and Creep......Page 530
10.1.2 Models for Analyzing Stress Relaxation and Creep......Page 532
10.2.1 The Relaxation Time......Page 537
10.2.2 Applications of Relaxation Times to Chemical Reactions......Page 538
10.2.3 The Retardation Time......Page 541
10.2.4 Dynamic Mechanical Behavior of Springs and Dashpots......Page 542
10.2.5 Molecular Relaxation Processes......Page 543
10.2.6 Diffusion at Short Times......Page 547
10.2.7 Relationships among Molecular Parameters......Page 548
10.2.8 Physical Aging in the Glassy State......Page 550
10.3.1 The Master Curve......Page 551
10.3.2 The Reduced Frequency Nomograph......Page 553
10.4.2 The Molecular-Weight Dependence of the Melt Viscosity......Page 555
10.5 POLYMER RHEOLOGY......Page 560
10.5.1 Shear Dependence of Viscosity......Page 561
10.5.2 Normal Stress Differences......Page 562
10.5.4 Instruments and Experiments......Page 566
10.5.5 General Definitions and Terms......Page 568
10.6 OVERVIEW OF VISCOELASTICITY AND RHEOLOGY......Page 569
REFERENCES......Page 570
STUDY PROBLEMS......Page 572
APPENDIX 10.1 ENERGY OF ACTIVATION FROM CHEMICAL STRESS RELAXATION TIMES......Page 574
APPENDIX 10.2 VISCOELASTICITY OF CHEESE......Page 575
Results......Page 576
REFERENCES......Page 578
11.1.1 The First Law of Thermodynamics......Page 579
11.1.2 Relations for Springs and Dashpots......Page 581
11.2 DEFORMATION AND FRACTURE IN POLYMERS......Page 582
11.2.1 Stress–Strain Behavior of Polymers......Page 584
11.2.2 Cold Drawing in Crystalline Polymers......Page 591
11.2.3 The Brittle–Ductile Transition......Page 592
11.2.4 Impact Resistance......Page 595
11.2.5 Mechanical Behavior of Elastomers......Page 598
11.2.6 Fiber-Reinforced Plastics......Page 603
11.3.1 The Griffith Equation......Page 607
11.3.2 The Stress Intensity Factor......Page 608
11.4 CYCLIC DEFORMATIONS......Page 610
11.4.1 Mechanisms of Crack Growth......Page 612
11.4.2 Fatigue Crack Propagation......Page 614
11.5.1 Fracture and Healing at a Polymer–Polymer Interface......Page 615
11.5.2 Molecular Basis of Fracture in Glassy Plastics......Page 616
11.5.3 Scaling Laws for a Polymer–Polymer Interface......Page 621
11.5.4 Tensile Strength Dependence on Interdiffusion Distance......Page 622
11.6.1 Definitions of Friction and Wear......Page 623
11.6.2 Characteristic Polymeric Behavior......Page 624
11.7 MECHANICAL BEHAVIOR OF BIOMEDICAL POLYMERS......Page 625
11.7.1 Dental Restorative Materials......Page 626
11.7.2 Hip Joint Replacement......Page 627
11.8 SUMMARY......Page 628
REFERENCES......Page 629
GENERAL READING......Page 632
STUDY PROBLEMS......Page 633
12 POLYMER SURFACES AND INTERFACES......Page 635
12.1 POLYMER SURFACES......Page 636
12.2.1 Surface Tension......Page 637
12.2.3 Polymer Blend Interfaces......Page 639
12.2.4 Crystalline and Glassy Polymers......Page 640
12.3.1 Surface Tension and Contact Angles......Page 641
12.3.2 ESCA (XPS)......Page 644
12.3.3 Scanning Electron Microscopy......Page 648
12.3.4 Scanning Probe Microscopy......Page 649
12.3.5 Secondary lon Mass Spectrometry, SIMS......Page 653
12.3.6 Ion Beam Analysis......Page 654
12.3.7 Neutron Reflectometry......Page 657
12.3.8 Determination of Interior Surface Areas......Page 662
12.4 CONFORMATION OF POLYMER CHAINS IN A POLYMER BLEND INTERPHASE......Page 666
12.5.1 Nondrip Latex Paint......Page 668
12.5.3 Example Calculation of p......Page 669
12.5.4 Conformation of the Bound Chains with Increasing Solution Concentration......Page 670
12.5.5 Example Calculation: A Single Chain Bound to Two Colloid Particles......Page 671
12.5.6 Depletion Zones......Page 673
12.6.1 The Force Balance Apparatus (Surface Forces Apparatus)......Page 674
12.6.3 Brewster Angle Reflectivity......Page 677
12.6.4 Dynamic Light-Scattering......Page 679
12.7 THEORETICAL ASPECTS OF THE ORGANIZATION OF CHAINS AT WALLS......Page 681
12.7.1 The Self-Similarity of Polymer Chains near Walls......Page 682
12.7.2 Fractionation of Polymer Chains near Walls......Page 683
12.7.3 The Glass Transition Behavior of Thin Films......Page 684
12.7.4 Fractal-like Interfaces......Page 687
12.8.1 Forms of Adhesives......Page 689
12.8.2 Strength of Adhesion with Cross-linking......Page 690
12.8.3 Experimental Measurement of Adhesion Forces......Page 691
12.8.5 Surface Modification......Page 692
12.8.6 Adhesion Bonding Energies and the Drago Constants......Page 693
12.9.1 The Requirements of Bone Cements......Page 697
12.9.2 Blood-Contacting Polymers......Page 698
12.10 OVERVIEW OF POLYMER SURFACE AND INTERFACE SCIENCE......Page 699
REFERENCES......Page 701
GENERAL READING......Page 705
STUDY PROBLEMS......Page 706
REFERENCES......Page 708
13 MULTICOMPONENT POLYMERIC MATERIALS......Page 709
13.1.1 Combinations of Two Kinds of Mers......Page 710
13.1.2 Polymer-Based Composites......Page 712
13.2 MISCIBLE AND IMMISCIBLE POLYMER PAIRS......Page 714
13.3.1 The Glass Transitions of Polymer Blends......Page 715
13.3.2 An Example Calculation of Polymer Blend Glass Transition Temperatures......Page 716
13.3.3 Glass Transitions of Polymer Composites......Page 718
13.4.1 Moduli of Particulate Composites......Page 720
13.4.2 Example Calculation of Composite Moduli......Page 721
13.4.3 Other Mathematical Relationships for Modulus Calculations......Page 722
13.5 THE MORPHOLOGY OF MULTIPHASE POLYMERIC MATERIALS......Page 728
13.5.1 Phase Inversion......Page 729
13.5.2 Example Calculation of Phase Inversion......Page 730
13.5.3 Morphology of ABS Plastics......Page 731
13.6.1 The Order–Disorder Transition in Block Copolymers......Page 732
13.6.2 Self-assembly in ABC Block Copolymers......Page 735
13.6.3 The Development of IPN Morphologies......Page 740
13.7.1 Reinforcing Carbon Blacks......Page 743
13.7.2 Fiber-Reinforced Plastics......Page 744
13.8 NANOTECHNOLOGY-BASED MATERIALS......Page 745
13.8.2 The Discovery of Carbon Nanotubes......Page 746
13.8.5 Composites Based on SWNT......Page 748
13.8.6 Potential Applications of SWNT......Page 749
13.9.1 Intercalation and Exfoliation......Page 750
13.9.2 Polyamide-6–Clay Nanocomposites......Page 751
13.9.3 Thermodynamics of Polymer-Clay Composites......Page 752
13.9.4 Epoxy-Clay Nanocomposites and Other Systems......Page 755
13.9.6 Mechanical Behavior of Montmorillonite Composites......Page 756
13.9.7 Industrial Applications of Exfoliated Montmorillonite Nanocomposites......Page 757
13.10 FRACTURE BEHAVIOR OF MULTIPHASE POLYMERIC MATERIALS......Page 758
13.10.1 Rubber-Toughened Plastics......Page 759
13.10.2 Toughening Mechanisms in Composite Materials......Page 761
13.11.1 Processing of Sheet Molding Compounds......Page 763
13.11.2 General Considerations in Application Science......Page 765
13.11.3 Applications of Polymers, Polymer Blends, and Composites......Page 767
REFERENCES......Page 770
GENERAL READING......Page 775
STUDY PROBLEMS......Page 776
14.1.1 The Global Picture......Page 779
14.1.2 Polyethylene Properties......Page 780
14.1.4 Polyolefin Elastomers......Page 782
14.2 THERMOSET POLYMER MATERIALS......Page 784
14.2.2 Epoxy Resins......Page 785
14.2.3 Polyimides......Page 786
14.3.1 Polymer Blend Aspects of Bread Making......Page 787
14.3.2 Morphology Changes during Baking......Page 788
14.3.3 Mechanical Treatment (Kneading)......Page 789
14.4.1 Silk Fiber Spinning......Page 791
14.4.2 Bacteria-Produced Polyesters......Page 794
14.5.1 Aspects of Self-Assembly......Page 795
14.5.2 Intrinsic Viscosity of Dendrimers......Page 797
14.5.3 Electron Microscopy Studies of Dendrimers......Page 798
14.5.4 Applications of Dendrimers......Page 799
14.6.1 General Properties of Supercritical Fluids......Page 801
14.6.2 Dispersion Polymerization via Supercritical Fluids......Page 802
14.7.1 Basic Electrical Relationships......Page 804
14.7.3 Conducting Polymers......Page 805
14.8 POLYMERS FOR NONLINEAR OPTICS......Page 808
14.8.1 Theoretical Relationships......Page 809
14.8.2 Experimental NLO Studies......Page 810
14.9.1 Electroluminescence......Page 811
14.9.2 Electroactive Polymers......Page 812
14.10.1 The Physics of Optical Tweezer Experiments......Page 816
14.11 THE 3-D STRUCTURE AND FUNCTION OF BIOPOLYMERS......Page 817
14.11.1 The Polymeric Structure and Organization of DNA......Page 819
14.11.2 The Amino Acids......Page 822
14.11.3 The Relationship of DNA to Protein Sequencing......Page 823
14.11.4 The Mechanics and Thermodynamics of Protein Motions......Page 824
14.11.5 Laboratory Synthesis of DNA and Polypeptides......Page 828
14.12.2 Current Methods of Retarding Fire in Polymers......Page 829
14.12.4 The Nanocomposite Approach to Fire Retardancy......Page 830
14.13 POLYMER SOLUTION-INDUCED DRAG REDUCTION......Page 833
14.13.1 The Physics of Drag Reduction......Page 834
14.13.3 Applications of Drag Reducing Polymers......Page 835
14.14 MODERN ENGINEERING PLASTICS......Page 836
14.15 MAJOR ADVANCES IN POLYMER SCIENCE AND ENGINEERING......Page 837
REFERENCES......Page 839
GENERAL READING......Page 844
STUDY PROBLEMS......Page 845
A......Page 848
B,C......Page 849
D......Page 851
E......Page 852
G......Page 853
H,I......Page 854
K,L......Page 855
M......Page 856
N,O,P......Page 857
R......Page 862
S......Page 863
T......Page 864
U,V,W......Page 865
X,Y,Z......Page 866