Introduction to Neuro-Fuzzy Systems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Fuzzy sets were introduced by Zadeh (1965) as a means of representing and manipulating data that was not precise, but rather fuzzy. Fuzzy logic pro­ vides an inference morphology that enables approximate human reasoning capabilities to be applied to knowledge-based systems. The theory of fuzzy logic provides a mathematical strength to capture the uncertainties associ­ ated with human cognitive processes, such as thinking and reasoning. The conventional approaches to knowledge representation lack the means for rep­ resentating the meaning of fuzzy concepts. As a consequence, the approaches based on first order logic and classical probablity theory do not provide an appropriate conceptual framework for dealing with the representation of com­ monsense knowledge, since such knowledge is by its nature both lexically imprecise and noncategorical. The developement of fuzzy logic was motivated in large measure by the need for a conceptual framework which can address the issue of uncertainty and lexical imprecision. Some of the essential characteristics of fuzzy logic relate to the following [242]. • In fuzzy logic, exact reasoning is viewed as a limiting case of ap­ proximate reasoning. • In fuzzy logic, everything is a matter of degree. • In fuzzy logic, knowledge is interpreted a collection of elastic or, equivalently, fuzzy constraint on a collection of variables. • Inference is viewed as a process of propagation of elastic con­ straints. • Any logical system can be fuzzified. There are two main characteristics of fuzzy systems that give them better performance für specific applications.

Author(s): Prof. Robert Fullér (auth.)
Series: Advances in Soft Computing 2
Edition: 1
Publisher: Physica-Verlag Heidelberg
Year: 2000

Language: English
Pages: 289
Tags: Artificial Intelligence (incl. Robotics); Business Information Systems; Operation Research/Decision Theory

Front Matter....Pages I-XII
Fuzzy systems....Pages 1-131
Artificial neural networks....Pages 133-170
Fuzzy neural networks....Pages 171-254
Appendix....Pages 255-286
Back Matter....Pages 287-289