This textbook is a comprehensive, interdisciplinary account of the technology and science underpinning nanoelectronics, covering the underlying physics, nanostructures, nanomaterials, and nanodevices. It provides a unifying framework for the basic ideas needed to understand the developments in the field. After introducing the recent trends in semiconductor and device nanotechnologies, as well as novel device concepts, the methods of growth, fabrication and characterization of materials for nanoelectronics are discussed. Coverage then moves to an analysis of nanostructures including recently-discovered nanoobjects, and concludes with a discussion of devices that use a 'simple' scaling-down approach to copy well-known microelectronic devices, and nanodevices based on new principles that cannot be realized at the macroscale. With numerous illustrations and homework problems, this textbook is suitable for advanced undergraduate and graduate students in electrical and electronic engineering, nanoscience, materials, bioengineering and chemical engineering. Addtional resources, including instructor-only solutions and Java applets, are available from www.cambridge.org/9780521881722.
Author(s): Vladimir V. Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio
Edition: 1
Publisher: Cambridge University Press
Year: 2008
Language: English
Pages: 347
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Наноэлектроника;
Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 9
Symbols......Page 14
Abbreviations......Page 17
Scientific opportunities......Page 19
Technological motivations......Page 20
Improving materials on the nanoscale......Page 23
Fabrication techniques on the nanoscale......Page 24
Improvement in characterization methods for the nanoscale......Page 25
New principles of device operation at the nanoscale......Page 26
Nanotechnology for optoelectronics......Page 27
2.2 Classical particles......Page 29
2.3 Classical waves......Page 31
Electromagnetic waves in free space......Page 39
From waves to particles......Page 41
From particles to waves......Page 44
2.5 Closing remarks......Page 46
2.6 Problems......Page 47
3.2 The Schrödinger wave equation......Page 51
Average values of physical quantities......Page 55
3.3 Wave mechanics of particles: selected examples......Page 56
A particle between two impenetrable walls......Page 57
A particle in a quantum well with finite potential barriers......Page 60
A confining potential with quadratic coordinate dependence......Page 63
Quantized electromagnetic waves as harmonic oscillators......Page 65
Low-dimensional subbands and "low-dimensional" systems......Page 66
Quantum-box, dot, and "zero-dimensional" systems......Page 68
Quantum reflection, transmission and tunneling effects......Page 71
3.4 Atoms and atomic orbitals......Page 73
3.5 Closing remarks......Page 80
3.6 Problems......Page 81
4.1 Introduction......Page 83
4.2 Semiconductors......Page 84
4.3 Crystal lattices: bonding in crystals......Page 86
Covalent crystals......Page 87
Metals......Page 88
Crystal lattices......Page 89
4.4 Electron energy bands......Page 91
An electron in a crystalline potential......Page 92
The holes......Page 94
Symmetry of crystals and properties of electron spectra......Page 95
Direct-bandgap and indirect-bandgap semiconductors......Page 99
Bandstructures of semiconductor alloys......Page 100
Band offsets at heterojunctions......Page 102
Graded semiconductors......Page 104
4.6 Lattice-matched and pseudomorphic heterostructures......Page 105
Valence matching......Page 106
Lattice-mismatched materials......Page 108
Strained pseudomorphic heterostructures......Page 110
4.7 Organic semiconductors......Page 113
Carbon nanotubes......Page 116
Buckyball fullerenes......Page 120
4.9 Closing remarks......Page 122
4.10 Problems......Page 125
5.1 Introduction......Page 127
Single-crystal growth......Page 128
Molecular-beam epitaxy......Page 130
Chemical-vapor deposition......Page 131
5.3 Nanolithography, etching, and other means for fabrication of nanostructures and nanodevices......Page 133
Etching......Page 135
Doping......Page 136
Scanning tunneling microscopy......Page 138
Atomic-force microscopy......Page 142
Transmission electron microscopy and scanning electron microscopy......Page 143
5.5 Spontaneous formation and ordering of nanostructures......Page 145
5.6 Clusters and nanocrystals......Page 152
5.7 Methods of nanotube growth......Page 154
Arc-discharge and laser ablation......Page 156
Chemical-vapor deposition......Page 157
Directed growth of single-walled nanotubes......Page 158
5.8 Chemical and biological methods for nanoscale fabrication......Page 159
Chemical self-assembly of nanoscale structures......Page 160
Biological methods......Page 162
Dip-pen nanolithography......Page 173
5.9 Fabrication of nanoelectromechanical systems......Page 175
5.10 Closing remarks......Page 179
5.11 Problems......Page 181
Electron fundamental lengths in solids......Page 183
Size of a device and electron spectrum quantization......Page 184
Quantum and mesoscopic regimes of transport......Page 187
The classical transport regime......Page 188
Time scales and temporal (frequency) regimes......Page 189
6.3 Statistics of the electrons in solids and nanostructures......Page 190
Classical statistics......Page 191
Fermi statistics for electrons......Page 192
6.4 The density of states of electrons in nanostructures......Page 198
Classical dissipative transport......Page 201
Dissipative transport in short structures......Page 206
Hot electrons......Page 210
Transient overshoot effects......Page 212
Classical ballistic transport......Page 215
Quantum ballistic transport: the Landauer formula......Page 219
Device conductance at low temperatures. The Landauer formula......Page 223
Single-electron transport......Page 226
6.6 Closing remarks......Page 231
6.7 Problems......Page 233
7.2 Electrons in quantum wells......Page 236
Single modulation-doped heterojunctions......Page 237
Basic equations describing the physics of the electrons at an interface......Page 238
Numerical analysis of a single heterojunction......Page 240
Control of charge transfer......Page 242
7.3 Electrons in quantum wires......Page 246
Electron transport in quantum wires......Page 248
7.4 Electrons in quantum dots......Page 249
7.5 Closing remarks......Page 255
7.6 Problems......Page 256
8.2 Resonant-tunneling diodes......Page 260
The physics underlying the resonant-tunneling effect......Page 261
Coherent tunneling......Page 263
Sequential tunneling......Page 268
Negative differential resistance under resonant tunneling......Page 269
A resonant-tunneling diode as a microwave oscillator......Page 271
Devices controlled by the field effect......Page 273
The FET-family devices......Page 275
Nanowire FETs......Page 279
Velocity-modulation transistors......Page 281
Quantum-interference transistors......Page 282
The split-gate technique......Page 287
Single-electron transistors......Page 289
A single-electron pump and turnstile......Page 291
p-n Junctions......Page 294
Bipolar transistors......Page 296
Hot-electron transistors......Page 298
8.6 Light-emitting diodes and lasers......Page 302
Photon absorption and emission......Page 303
Interband emission and absorption in semiconductors......Page 307
Laser diodes......Page 311
Surface-emitting lasers......Page 317
Blue and ultraviolet quantum-well lasers......Page 318
Light-emitting diodes......Page 319
Unipolar intersubband quantum-cascade lasers......Page 320
8.7 Nanoelectromechanical system devices......Page 324
Resonators. Parametric amplification......Page 325
Mechanically detected magnetic resonance imaging......Page 328
Coupling of electron transport and mechanical motion. The electron shuttle......Page 330
Frequency......Page 332
Characteristic operating power level......Page 333
Dynamic range of a NEMS......Page 334
8.8 Quantum-dot cellular automata......Page 335
8.9 Closing remarks......Page 339
Appendix: tables of units......Page 341
Index......Page 343