Introduction to Matrix Analysis

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Richard Bellman
Publisher: McGraw-Hill
Year: 1960

Language: English
Pages: 346

Title page......Page 1
Preface......Page 5
. Maximization of Functions of One Variable......Page 19
. Maximization of Functions of Two Variables......Page 20
. Algebraic Approach......Page 21
. Analytic Approach......Page 22
. Analytic Approach-II......Page 24
. A Simplifying Transformation......Page 25
. Definite and Indefinite Forms......Page 26
. Geometric Approach......Page 27
. Discussion......Page 28
. Vectors......Page 30
. Vector Addition......Page 31
. The Inner Product of Two Vectors......Page 32
. Orthogonality......Page 33
. Matrices......Page 34
. Matrix Multiplication-Vector by Matrix......Page 35
. Matrix Multiplication-Matrix by Matrix......Page 36
. Associativity......Page 38
. Invariant Vectors......Page 39
. Quadratic Forms as Inner Products......Page 40
. Symmetric Matrices......Page 41
. Hermitian Matrices......Page 42
. Unitary Matrices......Page 43
. The Solution of Linear Homogeneous Equations......Page 50
. Characteristic Roots and Vectors......Page 52
. Two Fundamental Properties of Symmetric Matrices......Page 53
. Reduction to Diagonal Form-Distinct Characteristic Roots......Page 55
. Reduction of Quadratic Forms to Canonical Form......Page 57
. Positive Definite Quadratic Forms and Matrices......Page 58
. Gram-Schmidt Orthogonalization......Page 62
. On the Positivity of the D_k......Page 65
. An Identity......Page 67
. The Diagonalization of General Symmetric Matrices-Two-dimensional......Page 68
. N-dimensional Case......Page 69
. Characteristic Vectors Associated with Multiple Characteristic Roots......Page 72
. The Cayley-Hamilton Theorem for Symmetric Matrices......Page 73
. Simultaneous Reduction to Diagonal Form......Page 74
. Simultaneous Reduction to Sum of Squares......Page 76
. Hermitian Matrices......Page 77
. Perturbation Theory-I......Page 78
. Perturbation Theory-II......Page 79
. Determinantal Criteria for Positive Definiteness......Page 90
. Representation as Sum of Squares......Page 92
. Constrained Variation and Finsler's Theorem......Page 93
. The Case k = 1......Page 95
. A Minimization Problem......Page 98
. Rectangular Arrays......Page 99
. Composite Matrices......Page 100
. The Result for General k......Page 102
. Functions of Symmetric Matrices......Page 107
. Uniqueness of Inverse......Page 108
. Square Roots......Page 110
. Parametric Representation......Page 111
. The Fundamental Scalar Functions......Page 112
. The Infinite Integral . . .......Page 114
. Relation between J(H) and |H|......Page 116
. The Rayleigh Quotient......Page 128
. Variational Description of Characteristic Roots......Page 129
. Geometrie Preliminary......Page 130
. The Courant-Fischer min-max Theorem......Page 131
. A Sturmian Separation Theorem......Page 133
. The Poincaré Separation Theorem......Page 134
. A Representation Theorem......Page 135
. Approximate Techniques......Page 136
. Integral Version......Page 141
. Hölder Inequality......Page 142
. Second Method......Page 143
. A Useful Inequality......Page 144
. Concavity of lambda_N......Page 145
. Additive Inequalities from Multiplicative......Page 146
. An Alternate Route......Page 147
. A Simpler Expression for lambda_N......Page 148
. Arithmetic-geometric Mean Inequality......Page 149
. Multiplicative Inequalities from Additive......Page 150
. A Problem of Minimum Deviation......Page 158
. Functional Equations......Page 159
. A More Complicated Example......Page 160
. Sturm-Liouville Problems......Page 161
. Functional Equations......Page 162
. Jacobi Matrices......Page 164
. Nonsymmetric Matrices......Page 165
. Complex A......Page 166
. Slightly Intertwined Systems......Page 167
. Simplifications-II......Page 168
. The Equation Ax = y......Page 169
. Quadratic Deviation......Page 170
. A Result of Stieltjes......Page 171
. Motivation......Page 177
. Vector-matrix Notation......Page 178
. Norms of Vectors and Matrices......Page 179
. Existence and Uniqueness of Solutions of Linear Systems......Page 181
. The Matrix Exponential......Page 183
. Functional Equations-I......Page 184
. Nonsingularity of Solution......Page 185
. Inhomogcneous Equation-Variable Coefficients......Page 187
. Perturbation Theory......Page 188
. Non-negativity of Solution......Page 190
. Polya's Fonctional Equation......Page 191
. The Equation dX/dt = AX + XB......Page 193
. Euler's Method......Page 201
. Nonsingularity of C......Page 202
. The Vandermonde Determinant......Page 204
. Diagonalization of a Matrix......Page 205
. Connection between Approaches......Page 206
. Multiple Characteristic Roots......Page 208
. Jordan Canonical Form......Page 209
. Multiple Characteristic Roots......Page 210
. Semidiagonal or Triangular Form-Schur's Theorem......Page 213
. Normal Matrices......Page 215
. An Approximation Theorem......Page 216
. Another Approximation Theorem......Page 217
. Alternate Proof of Hamilton-Cayley Theorem......Page 218
. Linear Equations with Periodic Coefficients......Page 219
. A Nonsingular Matrix Is an Exponential......Page 220
. An Alternate Proof......Page 222
. Some Interesting Transformations......Page 223
. Biorthogonality......Page 224
. The Laplace Transform......Page 226
. An Example......Page 227
. Discussion......Page 228
. Matrix Case......Page 229
. Powers of Characteristic Roots......Page 241
. Polynomials and Characteristic Equations......Page 243
. Symmetric Functions......Page 244
. Kronecker Products......Page 245
. Kronecker Powers-II......Page 246
. Kronecker Logarithm......Page 247
. Kronecker Sum-II......Page 248
. The Equation AX + XB = C......Page 249
. An Alternate Route......Page 250
. Circulants......Page 252
. A Necessary and Sufficient Condition for Stability......Page 258
. A Method of Lyapunov......Page 260
. Mean Square Deviation......Page 261
. Effective Tests for Stability......Page 262
. A Necessary and Sufficient Condition for Stability Matrices......Page 263
. Differential Equations and Characteristic Values......Page 264
. Effective Tests for Stability Matrices......Page 265
. A Simple Stochastic Process......Page 271
. Analytic Formulation of Discrete Markoff Processes......Page 273
. First Proof......Page 274
. Second Proof of Independence of Initial State......Page 276
. Some Properties of Positive Markoff Matrices......Page 277
. Second Proof of Limiting Behavior......Page 278
. General Markoff Matrices......Page 279
. A Continuous Stochastic Process......Page 280
. Generalized Probabilities-Unitary Transformations......Page 282
. Generalized Probabilities-Matrix Transformations......Page 283
. Limiting Behavior of Physical Systems......Page 289
. Expected Values......Page 290
. Expected Values of Squares......Page 291
. Some Simple Growth Processes......Page 294
. Notation......Page 295
. Proof of Theorem 1......Page 296
. Second Proof of the Simplicity of lambda(A)......Page 298
. Proof of the Minimum Property of lambd(A)......Page 299
. Steady-state Growth......Page 300
. Analogue of Perron Theorem......Page 301
. Mathematical Economics......Page 302
. Positivity of |I - A|......Page 306
. Linear Programming......Page 307
. The Theory of Games......Page 308
. A Markovian Decision Process......Page 309
. An Economic Model......Page 310
. Determinants......Page 321
. Homogeneous Systems......Page 322
. Rank......Page 326
. Signature......Page 327
Appendix B. The Quadratic Form of Selberg......Page 329
Appendix C. A Method of Hermite......Page 333
. A Device of Stieltjes......Page 335
. A Technique of E. Fischer......Page 336
. Representation as Moments......Page 337
. A Result of Herglotz......Page 338
Index......Page 341