Introduction to Hybrid Vehicle System Modeling and Control

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This is an engineering reference book on hybrid vehicle system analysis and design, an outgrowth of the author's substantial work in research, development and production at the National Research Council Canada, Azure Dynamics and now General Motors. It is an irreplaceable tool for helping engineers develop algorithms and gain a thorough understanding of hybrid vehicle systems. This book covers all the major aspects of hybrid vehicle modeling, control, simulation, performance analysis and preliminary design. It not only systemically provides the basic knowledge of hybrid vehicle system configuration and main components, but also details their characteristics and mathematic models. Provides valuable technical expertise necessary for building hybrid vehicle system and analyzing performance via drivability, fuel economy and emissions Built from the author's industry experience at major vehicle companies including General Motors and Azure Dynamics Inc. Offers algorithm implementations and figures/examples extracted from actual practice systems Suitable for a training course on hybrid vehicle system development with supplemental materials An essential resource enabling hybrid development and design engineers to understand the hybrid vehicle systems necessary for control algorithm design and developments.

Author(s): Wei Liu
Publisher: John Wiley & Sons, Inc.
Year: 2013

Language: English
Pages: 429
Tags: Транспорт;Автомобильная и тракторная техника;Автомобили с электрическим и гибридным приводом;

INTRODUCTION TO HYBRID VEHICLE SYSTEM MODELING AND CONTROL......Page 3
CONTENTS......Page 9
Preface......Page 17
Nomenclature......Page 21
Abbreviations......Page 27
1 Introduction......Page 31
1.1.1 Series Hybrid......Page 32
1.1.3 Series–Parallel Hybrid......Page 33
1.2 Hybrid Vehicle System Components......Page 35
1.3.1 Power Flow of Hybrid Vehicles......Page 36
1.3.2 Typical Drive Cycles......Page 37
1.4 Controls of Hybrid Vehicle......Page 38
References......Page 40
2.1.1 Gasoline Engine......Page 41
2.1.2 Diesel Engine......Page 42
2.1.3 Fuel Cells......Page 43
2.2 Electric Motor with DC/DC Converter and DC/AC Inverter......Page 45
2.3.1 Energy Storage System Requirements for Hybrid Vehicles......Page 47
2.3.2 Basic Types of Batteries for Hybrid Vehicle System Application......Page 49
2.4 Transmission System in Hybrid Vehicle......Page 53
References......Page 54
3.1 Modeling of Internal Combustion Engine......Page 55
3.2 Modeling of Electric Motor......Page 62
3.3 Modeling of Battery System......Page 67
3.4.1 Modeling of Clutch and Power Split Device......Page 72
3.4.2 Modeling of Torque Converter......Page 80
3.4.3 Modeling of Gear Box......Page 82
3.4.4 Modeling of Transmission Controller......Page 83
3.5 Modeling of Final Drive and Wheel......Page 86
3.6 Modeling of Vehicle Body......Page 88
3.7 PID-Based Driver Model......Page 89
References......Page 91
4.1 Basic Power Electronic Devices......Page 93
4.1.1 Diodes......Page 94
4.1.2 Thyristors......Page 95
4.1.3 Bipolar Junction Transistors......Page 97
4.1.4 Metal–Oxide–Semiconductor Field Effect Transistors......Page 99
4.1.5 Insulated Gate Bipolar Transistors......Page 101
4.2.1 Basic Principle of DC–DC Converter......Page 102
4.2.2 Step-Down (Buck) Converter......Page 104
4.2.2.1 Steady-State Operation......Page 106
4.2.2.2 Output Voltage Ripple......Page 110
4.2.3 Step-Up (Boost) Converter......Page 113
4.2.4 Step-Down/Up (Buck–Boost) Converter......Page 116
4.2.5.1 Isolated Buck DC–DC Converter......Page 120
4.3 DC–AC Inverter......Page 124
4.3.1 Basic Concepts of DC–AC Inverters......Page 125
4.3.2 Single-Phase DC–AC Inverter......Page 129
4.3.3 Three-Phase DC–AC Inverter......Page 131
4.4 Electric Motor Drives......Page 135
4.4.1.1 Operation of BLDC Motor......Page 136
4.4.1.2 Torque and Rotating Field Production......Page 137
4.4.1.3 BLDC Motor Control......Page 138
4.4.1.5 Sensorless BLDC Motor Control......Page 143
4.4.2.1 Basic Principle of AC Induction Motor Operation......Page 145
4.4.2.2 Controls of AC Induction Motor......Page 148
4.5.1 Basic Configuration of PHEV/BEV Battery Charger......Page 154
4.5.2 Power Factor and Correcting Techniques......Page 155
4.5.3 Controls of Plug-In Charger......Page 157
References......Page 159
5.1 Introduction......Page 161
5.2.1 Current-Based SOC Determination......Page 163
5.2.2 Voltage-Based SOC Determination......Page 166
5.2.3 Extended Kalman Filter–Based SOC Determination......Page 175
5.2.4 SOC Determination Based on Transient Response Characteristics......Page 177
5.2.5 Fuzzy Logic–Based SOC Determination......Page 179
5.2.6 Combination of Estimated SOCs by Different Approaches......Page 181
5.2.7 Further Discussion of SOC Calculations in Hybrid Vehicle Applications......Page 182
5.3 Estimation of Battery Power Availability......Page 184
5.3.1 PNGV HPPC Power Availability Estimation......Page 186
5.3.2 Revised PNGV HPPC Power Availability Estimation......Page 188
5.3.3 Power Availability Estimation Based on Electrical Circuit Equivalent Model......Page 189
5.4.1 Aging Behavior and Mechanisms......Page 195
5.4.2 Definition of State of Life......Page 197
5.4.3 SOL Determination under Storage Condition......Page 198
5.4.4 SOL Determination under Cycling Condition......Page 202
5.4.4.2 Online SOL Determination under Cycling Condition......Page 203
5.5 Cell Balancing......Page 210
5.5.2 Hardware Implementation of Balancing......Page 211
5.5.3 Cell Balancing Control Algorithms and Evaluation......Page 214
5.6.1 Introduction......Page 222
5.6.2 Core Temperature Estimation of Air-Cooled Cylinder-Type HEV Battery......Page 223
5.7 Battery System Efficiency......Page 226
References......Page 227
6.1 Introduction......Page 229
6.2 Rule-Based Energy Management Strategy......Page 230
6.3 Fuzzy Logic–Based Energy Management Strategy......Page 231
6.3.1 Fuzzy Logic Control......Page 232
6.3.2 Fuzzy Logic–Based HEV Energy Management Strategy......Page 239
6.4 Determination of Optimal ICE Operating Points of Hybrid Vehicle......Page 248
6.4.1 Mathematical Description of Problem......Page 249
6.4.2 Procedures Determining Optimal Operating Points......Page 250
6.4.4 Determining Optimal Operating Points......Page 251
6.4.5 Example of Optimal Determination......Page 252
6.4.6 Performance Evaluation......Page 256
6.5 Cost Function–Based Optimal Energy Management Strategy......Page 263
6.5.1 Mathematical Description of Cost Function–Based Optimal Energy Management......Page 264
6.5.2 Example of Optimization Implementation......Page 267
6.6.1 Driving Cycle/Style Pattern Recognition Algorithm......Page 269
6.6.2 Determination of Optimal Energy Distribution......Page 270
References......Page 272
7.1 Basics of Internal Combustion Engine Control......Page 275
7.2 Engine Torque Fluctuation Dumping Control Through Electric Motor......Page 277
7.2.1 Sliding-Mode Control......Page 278
7.2.2 Engine Torque Fluctuation Dumping Control Based on Sliding-Mode Control Method......Page 281
7.3 High-Voltage Bus Spike Control......Page 283
7.4 Thermal Control of HEV Battery System......Page 288
7.4.1 Combined PID Feedback with Feedforward Battery Thermal System Control Strategy......Page 290
7.4.2 Optimal Battery Thermal Control Strategy......Page 292
7.5.1 Traction Torque Control......Page 295
7.5.2 Anti-Rollback Control......Page 296
7.6 Active Suspension Control of HEV/EV Systems......Page 297
7.6.1 Suspension System Model of a Quarter Car......Page 299
7.6.2 Active Suspension System Control......Page 300
References......Page 307
8.1 Introduction......Page 309
8.2.1 AC-120 Plug-In Charging Characteristics......Page 310
8.2.2 AC-240 Plug-In Charging Characteristics......Page 311
8.3 Impacts of Plug-in Charging on Electricity Network......Page 314
8.3.1 Impact on Distribution System......Page 316
8.3.2 Impact on Electric Grid......Page 318
8.4 Optimal Plug-In Charging Strategy......Page 319
8.4.1 Optimal Plug-In Charge-Back Point Determination......Page 320
8.4.2 Cost-Based Optimal Plug-In Charging Strategy......Page 321
References......Page 328
9.1 Hybrid Vehicle Simulation System......Page 329
9.2 Typical Test Driving Cycles......Page 330
9.3 Sizing Components and Drivability Analysis......Page 336
9.3.1 Drivability Calculation......Page 337
9.3.2.1 Sizing Prime Mover......Page 340
9.3.2.3 Sizing Energy Storage System......Page 342
9.3.2.4 Design Examples......Page 345
9.4 Fuel Economy and Emissions Simulation Calculations......Page 350
References......Page 353
A.1.1 Types of Mathematical Models......Page 355
A.1.2.1 Input–Output Model of Linear Time-Invariant and Time-Continuous System......Page 356
A.1.2.2 State Space Model of Linear Time-Invariant and Time-Continuous System......Page 358
A.1.3 Linear Discrete System and Modeling......Page 364
A.1.4 Linear Time-Invariant Discrete Stochastic Systems......Page 365
A.2.1 Least Squares......Page 371
A.2.2 Statistical Property of Least-Squares Estimator......Page 372
A.2.3 Recursive Least-Squares Estimator......Page 374
A.2.4 Least-Squares Estimator for Slow Time-Varying Parameters......Page 377
A.2.5 Generalized Least-Squares Estimator......Page 378
A.3 State Estimation of Dynamic Systems......Page 379
A.4.1 Extended Kalman Filter......Page 381
A.4.2 Singular Pencil Model......Page 383
A.5 Enhancement of Numerical Stability of Parameter and State Estimation......Page 386
A.5.1 Square-Root Algorithm......Page 387
A.5.2 UDUT Covariance Factorization Algorithm......Page 388
A.6 Modeling and Parameter Identification......Page 391
References......Page 393
Appendix B Advanced Dynamic System Control Techniques......Page 395
B.1 Pole Placement of Control System......Page 396
B.2.1 Optimal Control Problem Formulation......Page 401
B.2.2 Pontryagin's Maximum Method......Page 402
B.2.3 Dynamic Programming......Page 404
B.2.4 Linear Quadratic Control......Page 408
B.3 Stochastic and Adaptive Control......Page 411
B.3.1.1 Minimum-Variance Prediction......Page 412
B.3.1.2 Minimum-Variance Control......Page 415
B.3.2 Self-Tuning Control......Page 417
B.3.3 Model Reference Adaptive Control......Page 419
B.3.4 Model Predictive Control......Page 421
B.4 Fault-Tolerant Control......Page 422
B.4.2 Software Redundant Control......Page 424
References......Page 425
Index......Page 427