Author(s): Jorge Alberto Barroso (Eds.)
Series: North-Holland Mathematics Studies 106
Publisher: Elsevier Science Ltd
Year: 1985
Language: English
Commentary: +OCR
Pages: iii-xi, 1-301
Content:
Edited by
Page iii
Copyright page
Page iv
Dedication
Page v
Foreword
Pages vii-xi
Chapter 1 Notation and Terminology, Polynomials
Pages 1-16
Chapter 2 Power Series
Pages 17-23
Chapter 3 Holomorphic Mappings
Pages 25-30
Chapter 4 The Cauchy Integral Formulas
Pages 31-44
Chapter 5 Convergence of the Taylor Series
Pages 45-56
Chapter 6 Weak Holomorphy
Pages 57-67
Chapter 7 Finite Holomorphy and Gateaux Holomorphy
Pages 69-79
Chapter 8 Topologies on Spaces of Holomorphic Mappings
Pages 81-109
Chapter 9 Uniqueness of Analytic Continuation
Pages 111-113
Chapter 10 The Maximum Principle
Pages 115-117
Chapter 11 Holomorphic Mappings of Bounded Type
Pages 119-126
Chapter 12 Domains of Hb-Holomorphy
Pages 127-137
Chapter 13 The Cartan-Thullen Theorem for Domains of Hb-Holomorphy
Pages 139-154
Chapter 14 Notation and Multilinear Mappings
Pages 155-158
Chapter 15 Polynomials
Pages 159-165
Chapter 16 Topologies on Spaces of Multilinear Mappings and Homogeneous Polynomials
Pages 167-172
Chapter 17 Formal Power Series
Pages 173-175
Chapter 18 Holomorphic Mappings
Pages 177-181
Chapter 19 Separation and Passage to the Quotient
Pages 183-184
Chapter 20 H-Holomorphy and H-Holomorphy
Pages 185-186
Chapter 21 Entire Mappings
Pages 187-189
Chapter 22 Some Elementary Properties of Holomorphic Mappings
Pages 191-193
Chapter 23 Holomorphy, Continuity and Ample Boundedness
Pages 195-196
Chapter 24 Bounding Sets
Pages 197-207
Chapter 25 The Cauchy Integral and the Cauchy Inequalities
Pages 209-214
Chapter 26 The Taylor Remainder
Pages 215-219
Chapter 27 Compact and Local Convergence of the Taylor Series
Pages 221-228
Chapter 28 The Multiple Cauchy Integral and the Cauchy Inequalities
Pages 229-231
Chapter 29 Differentially Stable Spaces
Pages 233-236
Chapter 30 Limits of Holomorphic Mappings
Pages 237-239
Chapter 31 Uniqueness of Holomorphic Continuation
Pages 241-243
Chapter 32 Holomorphy and Finite Holomorphy
Pages 245-247
Chapter 33 The Maximum Seminorm Theorem
Pages 249-252
Chapter 34 Projective and Inductive Limits and Holomorphy
Pages 253-261
Chapter 35 Topologies on H(U;F)
Pages 263-271
Chapter 36 Bounded Subsets of H((U;F)
Pages 273-278
Bibliography
Pages 279-295
An Index of Definitions
Pages 297-299
Author Index
Page 301